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ABSTRACT

ThiF investigation was concerned with various digital filtering
techniques and associated constraints. The synthesis procedures
discussed in this report emphasize the interplay of the various critical
design parameters. Generalized design procedures for lowpass, bandpass
and band stop filters are developed using a tabular procedure which
enables one to obtain the digital filter coefficients by inspection.
This approach allows for a sinpler evaluation and interpretation of such
problems as coefficient truncation, stability anU error constraints as
well as illustrating the importance and significance of the concept of
normalization in digital filters. The inter-relations among the
foregoing are discussed in detail leading to performance curves for
various implementations. A bandpass and band stop synthesis technique
which is accomplished through a simple conversion of the lowpass
coefficients is also developed. Bandpass filters having arithmatic
synnetry are then synthesized using a frequency shift technique as well
as a loip-,ass to bandpass transformation. The validation of these
approaches for various ratios of sampling rate to carrier frequency is
discussed. An analysis of synthesis errors is then accomplished. Under
the assuwnption that tabular data is available, design procedures which
minimize the sum-squared error are developed for design of non-recursive
digital filters. A second approach to the design of these filters
was accomplished under the assumption that a satisfactory recursive
digital filter design using the bilinear transform was available.
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EVALUATION

The increasing speed, as well as the decreasing size and cost
ass,,ciated with digital circuitry, that have been and still are
resulting from the advances in the field of microelectronics, brings
ithi, . the likelihood that digital filters will perform within
real time devices, almost all the functions now performed with analog
components. The advantage of these digital filters in terms of the
increased accuracies attainable, the ability to change filter shapes,
the time sharing capabilities, the simplicity of the components needed
(multipliers, adders and storage devices) and the variety of attainable
filter i-hapes, among many other advantages, all serve to illustrate the
importance and widespread application of this discipline.

Apart from "The Advanced Digital Processing" Contract .-w under way
(Contract No. F30602-69-C-0199) it is strongly recommended that further
work exploit the rich opportunities of this fruitful area. In particular
the error reduction technique discussed in Section V-D has shown
sufficient merit to warrant experimental breadboarding. Furthermore
an experimental investigation should bc initiated concerning the
digital oscillator implementation technique discussed in Appendix B.
A further area in this program looks highly rewarding at this time,
and that is the question of direct digital design in complement to
the presently developing family of digital equivalence procedures.

ITis approach (direct digital syrnthesis) warrants detailed
investigation in that it will allow for more flexibility in the designs
that can be achieved.

C1tARLES N. MEYER
Project Engineer

I vii



I. INTRODUCTION

The field of digital filters is based essentially on the mathematics of

difference equations. In addition, the work accomplished in the fields of sam-

pling, quantizing and related transformatiori techniques, have helped in both

the reinterpretation and furthering of this discipline.

The increasing speed, as well as the decreasing size and cost associat-

ed with digital circuitry, that have been and still are resulting from the

advances in the field of microelectronics, brings within view the likelihood that

digital filtf-rs will oerform within real-time devices, almost all the func-tiuns

now performed with analog components. The advantages of these digital filters

in terms of the increased accura-_ies attainabic, 'he ability to change filter

shapes, the time sharing capabilities, the simplicity of the components needed

(multipliers, adders and storage devices) and the variety of attainable filter

shapc., among many other advantages, all serve to illustrate the importance

and widespread application o( this discipline.

Thus, it is important that design procedures for digital filters be devel-

oped so that filters can be practically and economically synthesized, and that

eniineering designs can be accomplished.

This investigation was concerned with various digital filtering techniques

and associated constraints. Section II through Section V develop in detail the

foregoing. Recommendations for further study and development are discussed

in Section VI. The essential results of this investigation are summarized

below.



A. SUMMARY OF RESULTS

Section If - General Detign Procedures

Design procedures for lowpags, bandpass and bandstop digital filters,

are discussed. Thc bilinear transformation is applied to the design of lowpass

fil'ers in such a way that the relationships among the required sampling rate,

upper cutoff frequency and order of the filter are brought out. The approach

illustrates the importance of the ratio of sampling to cutoff frequency. The con-

cept of normalization and its significance is also discussed. A tabular proce-

dure is developed where these digital coefficients can be written down by

inspection. Furthermore, this approach allows for a simpler evaluation and

interpretation of coefficient truncation, stability and errors, as discussed in

dclail in Section V.

A lowpass to bandpass transformation is used in conjunction with the

bilinear transformation. This combined transformation is then structured in

such a form that a bandpass design can be accomplished by spedifying the ratio

of sampling frequency to bandwidth and sampling frequency to carrier frequency.

Thus, once again, normalized frequency parameters are shown 13 'z' significant.

An example illumtrates ho,. the foregoing are related to the factor Q, an often

used parameter in analog filters. By an adjustment of the sampling-to-carrier

frequency ratio a techiqu- i, described which allows a lowpass filter to be

converted to a tandia ,s design without changing any of the coefficients.

A second bandpass design procedure which utilizes a frequency shifting

technique is described. This approach shows considerable promise in the design

of arithmetically symmetrical filters as discussed in Section III. This shifting

procedure also suggests a technique for generating the coefficients "on line"

from a lowpass design.

Lastly, a feedback technique is described which offers a simple
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procedure for designing bandstop or notch fil-.1r, unce again, the procedure

in accomplished through a simple conversion of the lowpaes coefficients and

shows clearly the relationship between the depth of the notch and value of the

resulting coefficients.

Section III - Arithmetically Symmetrical Bandpass Filters

A formalized, step-by-step procedure is outlined for the design of

elliptic analog filters with examples illustrating the technique. These filters

are then digitized as lowpass filters using the approach discussed in Section II.

To con~ert these digital lowpass filters to bandpass, the frequency shifting

technique of Section II is applied and the mechanism of the coefficient changes

described. The examples chosen indicated that it was possible to reduce the

symmetry errors to zero. Thus, a mathematical analysis of symmetry errors

utilizing this shifting technique was accornplished. It was shown that there are

two types of errors. A symmetry error about the carrier frequency and the

error resultivr fr-om the shift from lowpass to bandpass. It is shown that the

forir.er error can be reduced to zero and the latter error to a negligible amount

by appropriatt-ly choosing the relationship between carier frequency and sam-

pling rate.

It is then shown that for a particular ratio of sampling to carrier fre-

quency, the L1P-BP transformation yielded an arithmetically symmetrical

design with zero symmetry error. This technique is then compared with the

shifting technique at the same ratio. Although in general the shifting technique

is excellently suited for the design of symmetrical filters, (and the LP-BP

technique is not) the LP-BP transformation at this one sampling -to-carrier

frequency ratio proves to be a simpler technique to apply if one alread- las the

digital lowpass filter inrplementation-

3



Section IV - Nonrecursive Digital Filters

Under the assumption that tabular data is available in terms of the

desired frequency characteristics, (both amplitude and phase), a design pro-

cedure for nonrecursive digital filters is developed which minimizes the sum

squared error between the desired and actual response characteristics. These

design equations are then related to an equivalent procedure which can be used

when the desired response characteristics are available as a continuous function

of frequency.

A second approach to the design of nonrecursive filters was accomplished

under the assumption that a satisfactory recursive digital filter design was

available.

Thus the procedure consists essentially of developing a finite Fourier

series approximation to the recursive filter. It was assumed that the recursive

filter was designed using the bilinear transform and that the nonrecursive

approximation was to be a minimum mean square approxirnztion to the recursive

form. A simple technique (referred to as a digital impulse invariant technique)

for converting the recursive coefficients to the required nonrecursive coefficients

is developed. This approach yields zero error in the impulse responses of the

two filters up tc the number of terms retained in the nonrecursive form.

It was noted that there are essentiafly two types of errors in nonrecur-

sive filter design. The first wis due to a transformatio. procedure, the second

due to truncation. The process of zero removal and relocation is discussed in

the context of removing this second source of error. The interpretation of

raised cosine pulses is accomplished using this technique aE well as the relation-

ships among several other nonrecursive design procedures. Ideally, this

procedure offers the possibility of a complete characterization of fiPite pulses.

4
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Section V - Error Considerations

It is noted that there are three types of errors which occur in digital

filter processing. The first of these is related to the process of sampling and

quantizing the input signal. The second occurs as a result of truncating the

representation of the filter coefficients. The third error is referred to as

computational quantization. That is, the errors that occur as a result of

quantizing the weighted multiplications and additions that occur within the digital

filter's arithmetic unit. In recursive filters the results of these computations

are fed back and utilized in later computations. This section discusses the

latter two types of errors.

The relationship between coefficient accuracy and filter stability is

determined using the tabular approach discussed in Section II. Simple relation-

ships are derived which clearly show the interplay between the order of the

filter, the ratio of sampling rate to critical filter parameters and the bit

requirements for the filter's coefficients. Using this tabular approach, the

filter degradation and onset of instability is interpreted as a function of the bit

truncation of the coefficients. It is note Liat when the ratio of sampling rate

to filter cutoff frequency (in conjunction with the order of the filter) go beyond

a specified value relative to the number of bits retained, the direct approach

should not be used.

The foregoing constraints are illustrated through the design of a high

order lowpass filter synthesized using the bilinear transformation. The supeli-

ority of the cascade approach (and the conditions under which it is superior) is

then illustrated by synthesizing a filter utilizing the same number of bits per

coefficient as in the direct form. This is accomplished twice. The first time

the critical parameter are adjusted so that the direct and cascade approach

yield similar r-sults. Then this same is parameter adjusted so that the direct

form does not yield useful results whereas the cascade approach does.

5



The relationship between the direct and canonical recursion implemnen-

tations are discussed as to their performance when computational quantization

occurs.

Illustrative examples indicate that a crossover point exists at which one

implementation is more preferable than the other. It is noted once again that

the determining factor is the normalized sampling rate.

Lastly, an auxiliary storage technique is discussed which offers the

possibility of r-ducing the errors due to computational quantization. An exam-

ple illustrates the approach.

Appendix A - A Bandpass Sampling Technique

Allowable sampling rates are discussed for bandpass signals so that no

overlap distortion occurs. A curve is obtained relating the allowable .sampling

rat. to the bandwidth and carrier frequency. As noted in the previous sections,

these relationships are of extreme importance for bandpass filter design.

Appendix B - Digital Oscillators

Various implementations for a digital oscillator are discussed. An

implementation utilizing the canonical form representation yields the smallest

errors (due to computational quantization) and also requires the least amount

of hardware. This device is e.ceedingly useful both as a frequency synthcsizer

and as a device to be used in conjunction with tracking filters, frequency

translators and bandpass filtering.

6
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Il. GENERAL DESIGN PROCEDURES

A. BILINEAR TRANSFORMATION - LOWPASS APPLICATIONS

The basic for-n %it a linear-time-invariant recursive digital filter is

given by
N M

a. b. 1V B' _x n- -j ._*
j 0 0 jl o

or equivalently in tetrms of its transfer function as

N
Sa. z-J

H(Z) = )j 1-ll-Z

, b. Z~ji
j--0

re-1  -jT

where Z I e is the unit delay operator, T is the time between successive

samples (equal spacing assumed), -is the digital frequency variable, H(Z) the

transfer funct,.-i, x and yn the input and output samples, and a. and b. the digital

filter coefficients. Thus the digital filter is an arithmetic unit which performs

the operations of veighted multiplications and additions on past and present

input and ou° ut data samples. The inclusion of non-zero b. coefficients gives3

rise to the terminology recursive or feedback type filter in which prior output

samples are utilized.

Alternate equivalent realizations will be discussed in Section V.

It is to be noted that the digital frequency variable, w-, appears only as

a product W T = 2 -,r T/f where f is the sampling rate. The significance of the

foregoing will be discussed on the following pages relative to the important

concept of normalization for digital filters.



The general problem of recursive digital filter desi3n is the determina-

tion of the coefficients a. and b. so that a desired filter characteristic is obtained.
j j

A basic approach to this problem has been to utilize existing continuous (analog)

filter theory to "find" a suitable response and then apply a transformation

technique which digitizes the continuous filter in such a wa) that the response

is transformed without any appreciable distortion. This is referred to as a

digital equivalence technique.

A transformaticn which has been used with considerable success is the

so-called bilinear (1) or Tustin ( Z) transformation given by the mapping between

the variables S and Z-I given by

2 (i - z - )

(+ Z-

or

+_ (ST/2 11-4

The advantageous properties o this transformation ir. terms of preser-

vation of stability (the left of the s plane is mapped into the interior of tht unit

circle of the Z plane), the maintenance of the cascading property (as well as

dc gain) and the simplicity of its application in that it is purely algebraic in

(3)
nature, has been discussed by several authors. A disadvantage of this

technique is that the transformation given in 11-3 causes a distortion in the

frequency domain. That is, with s jw and Z -l = e - j wT , 11-3 becomes

w T - tan Z T / 2 1 -

The approach for the design of nonrecursive filters often uses a more

direct approach without resorting to transformation techniques. These filters

(b. = o,l< j < M ) will be discussed in Section IV.



Thus, the relationship between the analog and digital frequency variables is not

linear. The deviation from linearity given by 11-5 is dependent on the product

(wT/2). Since T is the reciprocal of the sampling rate, this distortion or so-

called warping of the frequency scale is reduced when the ratio of sampling rate

to critical frequency points is made larger. There are however, other con-

straints on this ratio which will be discussed. Furthermore, compensation of

this distortion will also be discussed.

In that the bilinear transformation properly occupies a central position

in the d .sigr. of digital filters, it has been utilized extensively in this investiga-

tion. In order to illustrate the design approach and discuss the interrelation-

ships among the various critical parameters, consider a -,crmalied (unity

cutoff frequency, in rad/sec) low pass (LP) analog (or continuous) filter of the

form

N

' A S
n

4-1 n

G(S) = n 0 I-6*

B S'
. n

n=O0

The concept of a normalized frequency response characteristic is widely accept-

ed in the synthesis of continuous filters as a procedure which allows for a

universal design. In order to convert this normalized response to a low-pass

filter with an upper cutoff frequency of Cc if one applies the conventional LP to

LP transformation

S - _ 11-7
u

Although the numerator and denominator are usually ot "'ifferent order,

they can always be written as shown, by adding the required zeros.

9

I-



in conjunction with the bilinear transformation from S to Z, it can be shown

that the synthesized digital filter H(Z) becomes

HM() G(1-) 2u
u S = 2 1 __ "

1+ Z

or

u T N-n - n I)N-nSAn(IT - )(I + Z"
H(Z) n-0 11-9

N u T N-n 1 ~~ 1NB Bn(=-)N- (I -1 )n (I + Z_ ) N - n

n=0

In the determination of 11-9, fractions were cleared by multiplying the numerator

and denominator by (w uT/2)N and ( + ZI)N . Now, suppose u is the desired

digital upper cutoff frequency of the digital filter.

Using the transformation of 11-5, the analog cutoff frequency variable

is replaced by its equivalence in terms of and then 11-9 becomes

N N

SA K N -r - z-I)n (I Z-I)N-n 7 aZ_4-1 n M nz n
H (Z ) = 0= u _ n : 01-()N - Ii-i0

,B N-. ( n +-IN-n + - '  b z'n

n 0 n 0

where the a and b are the coefficients of Z -n obtain"-i by expanding the suo-
n n

mations in II-10 and

K u = tan(u T) II

Thus, the frequency response of a digital filter is a function of the normalized

(with respect to the sampling rate) digital cutoff frequency. Furthermore, since

10



Z-I = e-J T and the A and B are the constants obtained from the normalizedn n1

lowpass analog filter, the entire digital frequency characteristic (H(Z)) is such

that the digital frequency variable wappears only as the product wT. Thus if this

characteristic is plotted as a function of W T and not :, one obtains a normalized

digital frequency characteristic which provides a universal curve in the same

sense as normalization with respect to w-- I rad/sec did in the analog case.

This is exceedingly important to note in that

the coefficients (a , b ) for this digital lowpass
filter remain fixes as long as the product : T
= 2 Tr T/f remains fi'cd. u

Therefore, the coefficients for a digital lowpass filtr with a citoff at

T = 10 KHz operating on data sampled at f = 100 KHz are exactly the same as
u S

those obtained for any other'T and fs as long as the ratio T /f .1. Hence,
U a - us

by plotting the characteristic as a function of: T (i.e. in radians or degrees)

one has a "universal" digital filter characteristic (the digital coefficients re-

main fixed) for that particular ratio ofT to f (or equivalently a fixed K- ).
u s U

To convert this angular abscissa to actual frequencies, one merely utilizes the

actual sampling rates used on the input data. These rates are of course dictated

by the bandwidth of the input data and the constraints of the sampling theorem.

For the foregoing reasons all digital filter characteristics in this report arc

plotted as a function of angle. The above results are of course applicable to

bandpass, bandstop and all other digital filter forms. The critical ratio and

parameters in these cases xill be discussed in II-B.

In order to obtain the a's and b's of the digital filter in terms of K- and
U

the A's and B's of the analog filter, II-10 must be expanded. It is also to be

noted that tht form of the numerator and denominator of II-10 is similar to one

another. Thus the expansion equations will likewise be similar. During this

investigation it has been shown that these digital coefficients for any order filter

II



are g v n by the following table. TA L I

Coefficients 0 K' PK' P? K - PN K0

0z (a 0 b) I111

z-2 () N)(

d.i'

z-N (aN bN) 0N )

where CN
r r~ (N-r)l

The entry d1  in row i and column j is given by

d. d [d,_, j-l 4 U1j] H1-12

The interpretation of this table to obtain the digital filter coefficients is as

follows: To obtain the numerator coefficients a substitute for P. the- appro-
k'J

priately subscripted numerator coefficient of the analog filt -r and sumi all the

products of the table entries and column headings. The samne .procedure is used

for the denominator coefficients except that the analog denomninator coefficecnts

are now substituted for the P..,

As noted from this Table, the first rcw consists of all "ones"' and thu

first columnn consists of the binomial coefficients. It can also be shown that



the last row is identical to the first row except with alternating signs and the

last column identical to the first column except for alternating signs. Utilizing

11-12, it can also be shown that the sum of the table entries over any column

except the first is equal to zero. The above relationships N'ill be found to be

useful in the discussion of coefficient accuracy and stability considerations dis.-

cussed in Section V.

As an example of the above, Table II lists the digital filter coefficients

for a sixth order digital filter. The coefficients in this table are obtained

utilizing 11-12.

TABLE II

Sixth Order .Digital Filter Cozff::ients

6 5 4 32
(a or b 0 ) = P 0 K +4P K + P 6

(aP or b 6POK4 -K 2 4 P5K-- 6P
u Iu U u U

(a 2 or b 2 ) = 15P K 6 +5P K5 - PK 4 -3P3K - P4K +5P5 K +15 P
u 1 U u u U

(a or b3=20 K 6  -4 P2K4  +4P K- -20P
o3 V 0 W - - 4 6u u u

(a orb 4 = 15Po6 -5P K 5 - P2K4  3 K -  K +15P

6 ~ 5 24 K2  -
(a 5 or bs) 6PoK6- PIK5+ZP K4 -2P 4K +4PK 6P

U u u u

(a orb = P - PlK-+ PK 4 P K + pK- PK + P
6 6 01 ~ 2 3 U 4 W 5: 6U U1 11 % U U/

Although error considerations will be discussed in detail in Section V,

Table 11 illustrates some ot the constraints among the various parameters and

how they affect the required number of bits t_- he -etained for the coefficients.

As can be seen from this Table (and Table I), K- appears in the equations

u

13



raised to powers up to thc order of the filter. This factor (given by II-1l) is

proportional to the ratio of upper cutoff frequency to sampling frequency. Thus,

when this ratio is small and the order of the filter high, K- is a small number.
13U

Qualitatively from these tables it can be seen that to include the effect of P 0 a

sufficient number of bits must be retained. For example, if the ratio of

sampling to cutoff frequency is 30:1 then K6 t 106 and as maty as six decimal
U

digits might be required in the synthesis. It should be recalled that the sampling

rate is dictated by the signal bandwidth and aliasing considerations and there-

fore cannot be made arbitrarily smaller. Thus, if it is required to design a

filter with a 3 db point at 30 KHz to filter a signal with a bandwidth of . 3 MHz,

then with a sampling rate of 3 times mdximum the ratio discussed above becomes

30:1 = f :T
a U

As an illustrative example of the use of the foregoing tables, consider

the design of a normalized lowpass elliptic filter designed to meet the follow-

ing specifications.

Passband Spec. .01db ripple 0 < w., I

Stopband Spec. 40db attenuation 1. 38 < w < co

The above specifications can be shown to yield a sixth order analog filter of the

form

S+ A2 S + A 0

G () 11-13
S 6 + B5S 5 + B4S4 + B3S3 + B S + BIS + B0

These filters will be discussed at length in Section III.

Note the normalizations on the analog filter. That is the stopband

begins 38% beyond the passband.

14



A

where the coefficients are given as

TABLE Ill

A 0 = 6. 79609 B 5.71737

A 2  5. 40108 B. 6. 29689
3

B 0 = 1. 26743 B 4 = 5. 06663

B 1 = 3. 44569 B 5 = Z. 62)93

B-6 1

Solving for the roots of the numerator and denominator yield the pole-zero con-

figuration for this filter given by

TABLE IV

z 0  = t j 1.84538 (-
(zeros)

z, = + j 1.41268

pl = ". 10102 t i 1. 12369

p 2 = -. 39699+ .99211 (poles)

P3 = -.81294 +  .45946

It was decided to digitize this filter for a ratio of sampling rate to cut-

off frequency of 18:1. This could correspond to the problem of filtering sampled

data in the band from 0 to I KHz from a signal wvith a bandwidth Djf 6 KHz that

has been .3ampled at three times its bandwidth or f = 18 KHz, thus yielding
S

f/T 18.

The procedure to obtain these coefficients will be discussed in Sectioii

III, where additional references on analog filter coefficient dt,.rrn;iatiun will

be given.
15
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For this ratio, the product wuT becomes

-. u

, T 2 r T (tad) 20 11-14
s

Thus K- becomes
U

w T
K- = tan( ) tan(10 ° ) .17633 11-15

U

Using the analog coefficients given in Table III, the factor K- given
Wu

Tbove, and the tr.-nsformation equations of Table II, the digital filter coef-

ficients obtained by summii-g each row of this table are given as

TABLE V

a 0 = .0365179 b0 = 1.6605333

a 1 = -. 0505161 b, - 8.507334

a 2 = -.0332495 b 2 = 17.0485046

a 3 = .1075630 b 3 = -19.3912146

a 4 = -.0332495 b4 = 12,6265180

a -. 0505161 b =- 4,4568329

a6 - .0365179 b6 = .6656633

(numerator) (denominator)

A plot of the resulting magnitude characteristic is shown i> Figure II-1.

Two significant items are to be noted from the above. First, the digital

filter obtained is valid (without changing any coefficient) at any frequency as

long as the 18:1 ratio is maintained, Second, the plotting of the magnitude

characteristic is shown as a finction of angle -- not frequency. Thus, the cut-

off's are adjusted to the desird frequency by a selection of the sampling rate.

16
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The foregoing illustrated a design procedure for lowpass filters which

is simple to apply and which yields accurate results. Consideration on coef-

ficient bit lengths, errors and implementation procedures, will be discussed

in Section V.

B. BANDPASS DICITAL FILTERS - LP-BP TRANSFORMATION

As noted in the previous section, digital filter normalization can be

accomplished for all filter forms. A transformation from low pass to band-

pass will now be discussed which illustrates the manner in which the critical

parameters affect the design.

The conventional lowpass to bandpass transformation (LP-BP) used in

analog filter design is given as

LP-BP (analog)

S 2+, 2
S B S 0 11-16

2

where B = w 'I (bandwidth); u0 = W WZ (center frequency squared) and w, and

W are respectively the lower and upper cutoff analog frequencies. If 1-16 is

combined with the bilinear transformation given in 11-3, then 11-16 becomes

l+ [ Z[( )/(1+ z + 11-17
BT 1 ZI

Now, the bilinear transformation transforms analog frequencies to digital fre-

quencies as

WT "-. tan T Uf-18

Thus, utilizing the above and the relationships between w0, '1 and w Z the factors
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in 1-17 become

22 T
1 +iJ2T2/4 1 + tan(- 7 -) tan(--) 1 1

r-~ -g-11-19

tan(-T) - tan(---) tan

T
1 0T2/4 - tan Z )

Z= cos 0 TI + W 0T /4 oT o
T 1 + tan (T

where

cT T
0 0

-" tan(---)

cT  1T

-- tan(-"Z--) II-0

.2T ;2 T

tan(m-Z)

Thus 11-17 becomes

LP-BP (digital)

I - 2(cos W T) "Z + Z
S -- 11-21K- (I1 - zZ)

B

The transformation from S to Z is now given in terms of the digital parameters

of (1) digital carrier frequency w and (2) digital bandwidth (2 - W ). Once

again, the parameters are normalized with respect to the sampling rate.
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Similarly, the lowpass to bandstop transformation is merely the inverse

of II-Zl or

S - K -Z I-22
- 2(cos a T)Z " I + Z-2

0

Thus, one now has two simple transformations to convert a normalized lowpass

analog filter to either a bandpass or bandstop digital filter by specifying the

normalized digital center frequency and normalized digital bandwidth. Qualita-

tively, this equation can be related to the lowpass transformation by noting that

the factor K has replaced the lowpass factor K- and the numfrator of I-Z1

can be interpreted by noting that

-l -2 -l -jET +j T

- 2(cos Z0T)Z + Z = (Z - e -e 0 11-23

Thus since Z e the roots have been shifted to W 0 , the digital

carrier frequency.

As a simple example of the application of the LP-BS transformation,

consider the lowpass R-C filter

I
GLp(S) = + 11-24

substituting 1I-Z2 in the above yields

1 - Z(cos _ T)Z + Z

H(Z) = 0
(I + K-) - 2(cos 0T) Z + (0 - K-) z 2  II-?5

Thus 11-25 represents a digitized R-C bandstop filter for any normalized digital

center frequency and normalized digital bandwidth (or notch or rejection band).

The resulting digital filter is of the same form as would result from applying

the bilinear transform directly to the familiar analog notch filter given by
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S2 + x2
S + 2 11-26

where X is the analog notch frequency and g is the analog damping ratio. This

is so because the R-C filter is converted to the above by the LP-BS (analog)

transformation.

A further interpretation of the factor K; or terms of the Q of the filter

is as follows

K -tan (WZ-WI)T/2] tanwf T 11-27

rf= dig 1 bW 11-28

Now (I/T) = fs = sampling rate. However, if one assumes that

f = rT 11-29
S 0

and

T
o carrier frequency 11-30

Tf BandTwidth

Ff

then K- becomes

Kr-= tan 7 11-31

Thus, for high Q filters (Q > 10) this can be approximated by

K k 11-32

As expected, the higher the Q of the filter, the narrower the bandwidth. If, for

example, k is chosen to be equal to four -- signifying that the sampling rate is

four times the desired carrier frequency and Q z Tr x 100/2 (for example), then

the digitized R-C of II-25 becomes
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H(Z) = + Z-
1.005 + .995 Z

A plot of this filter within the rejection band is shown in Figure 11-..

Note, once again that this filter has been plotted as a function of angle.

Since it was assumed that f / = 4, then T = r/4 or 900. Thus the nirmalized

center frequency of this bandpass filter is 900.

The digital LP-BP and LP-BS transformations given in II-Zl and 11-Z2

have interesting properties when compared with the LP-LP transformation of

S ( - Z -1 11-34
K- (1 + Z- I )

u

obtained by combining the bilinear transformation with S -- S/W u .

Consider 11-21 when the ratio of sampling rate to carrier frequency

fa/ro is 4:1. In this case cos: 0T = 0 and 11-21 becomes

I (I + z -
-

S -- W - . l _1 -35

Similarly the LP-BS transformation becomes

(I - z Z) 1I-36

(I + Z'1)

Comparing 11-34 and 11-35, one notes that if K- is replaced by Kp- and Z -1 is

replaced by -Z 2 then 11-34 ;s converted to 11-35. Thus, one has a procedure

to convert a lowpass digital filter to a bandpass digital filter without changing

the magnitude of any of the coefficients. The constraints are that the upper

frequency cutoff of the lowpass filter is made to coincide with the digital band-

width and the 4:1 ratio be maintained. Thus a digital lowpass filter of the form

2z
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I
N

Sa nZ n

n
n= 0

H p(Z) = n 0 1-37

nn = 0

is converted to a digital bandpass filter of the form

N
E a ( - ) n Z 

" 2n

n= 0
HBp Z) = n=0 11-38

b(1)n Z-Znbn(-l)n z'

n 0

Similarly, the LP-BS transformation is cbtained by replacing Z- I by

Z - Z and K- by I/Kr . As an example of the latter, consider applying 11-34
U

to the analog R-C filter of 1-24. Making the substitution yields

HLP(Z) =I + Z 11-39
)(I - z-1 ) + (I + z-

u

Making the substitution noted above yields

H (Z) = Z 11-40
H BS(Z) = +Z + (T + Z)

( l+ Kr) + (i -Ky)Z

Equation 11-41 reduces to the notch of 11-33 w'cn K .005 which is in the ex-

ample.

The above procedures illustrate the use of a digitized LP-BP and BS
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transformations. As noted above, when the ratio of sampling to carrier fre-

qiency is 4:1, bandpass filters can be obtained without changing the magnitude

of the coefficients. It is to be noted that the highest negative power of Z is twice

what it was in the lowpass case, implying twice the number of delay elements.

C, BANDPASS DIGITAL FILTERS - A SHIFTING TECHNIQUE

The bandpass design procedure discussed in the foregoing utilized the

LP-13P transformation in conjunction with the bilineir transformation. The

analog LP-BP transformation is of a form which yields a realizable (in terms

of R's, L's and C's) analog filter. One need not be constrained in this manner

in the design of digitat filters. A technique will now be described which parallels

that of a heterodyning procedure in analog signal theory.

If one has the Fourie, transform pair

f(t) -@- F(wo) 11-42

Ther.

g(t) = f(t) cos W t e-* F(-w + F(w + w0-43
o 2

Thus ii f(t) were a lowpass signal, then g(t) is a bandpass signal centered at wo"

Consider the application of the above to the lowvpass digital filter

N

a --
'-J n

n~
H (Z) 0 11-44

V' b Z'
n

.; n

By div-iding out the denomninato.-, 11-44 can bc written as

2O

HLP(Z) h Z - n 1-45

n 0
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or, the input-output equation becomes

ou

Yn h k Xrnk 11-46
k= 0

Multiplying the hn coefficients by cos ni T and taking the Z transform of 11-45

yields
j T -j JT)

H'Z' H LP(Ze T ) + HLP(Ze T 11-47HB P IZ ) = zI-7

Combining Eqs. 11-44 and 11-47 yields

N M

a b z-(k+n) cos T (n-k)
1a k n o

k=0n=0
HBp(Z)= M M[ 11-48

V V b b Z(l+n) cos : T(n-k)
.-j -.j k n o

k=0n=0

which is of the form discussed by Broome !4)

It can be shown that 11-48 can be rewritten as

N+M

A Z -n

j n
H- p(Z) = n= 01-4H -47M 11-49

BP( +M

SB Z
n

.J n
n= 0

where

M

A a b cos T(n- r) 11-50n - n-r r 0

r=C

and

M

B V b b cos W [(n- 2 r) 11-51n n-r r o
r-O
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k

Thus, the numerator coefficients of the BP filter are a function of both the nu-

merator and denominator coefficients of the lowpass filter. It should also be

noted that the bandpass coefficients are once again a function of the normalized

carrier frequency and that 11-48 and 11-49 are in the form of a convolution sum

suggesting a synthesis procedure, which will be discvssed in the following

:jections.

Perhaps the greatest application for this technique lies in the .Iesign of

symmetrical bandpass filters -- an application which will b:. discussed at length

in the next section. The above application is due to the fact that the design pro-

cedure was accomplished through a tranolation of the frequency characteristic

to the left and right by w . The LP-BP transformation discussed previously
02

had properties of geometric symmetry (w 0 = W ) .

As in the case of the LP-BP transformation, a simplification is obtained

for a 4:1 ratio of sampling frequency to center frequency. For this case, 11-50

and 11-51 beccme

M

A 1 )' (-i b a 11-52
n r ii-r

r = 0 n even

M

B I) ()r b b 11-53n r n-r
r=0

A B = 0 n odd
n n

Illustrative examples comparing the above and the LP-BP transformation will

be discussed in the next section. The two approaches presented provide for

convenient synihesis of bandpass (and bandstop) digital filters in terms of their

critical parametersi.
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D. BANDSTOP DIGITAL FILTERS - A FEEDBACK TECHNIQUE

Consider a bandpass digital filter given as HBP(Z). Then form a new

digital filtf- given by

HBs(Z) - I + KHBP(Z) 11-54

where K is a constant adjusted to be much greater than the maximum gain of

HBP(Z). Now, assuming that the gain of t Bp(Z) is unity in the pas:.band then

HBS(Z) is given by

H, K (In the pass--nd) H-5S"ns -+ K- -  of H BP (Z)

In the region where HBP(Z) is small (KHIBp(Z) << I), HBS is

HBS(Z) A 1 on stopband II-r6
(1f H B P ( Z )

Thus, the atteruation ia the stopband is controlled by K and the passband gain is

unity.

Consider the digital filter coefficients generated by this technique. Let

H (Z) : N(Z) 11-57

Then 11-54 becomes

HBs (Z) D(Z) 11-58

Thus, the nunerator and denominator coefficients are given respectively by

a bn n
11-59

b' =b +Ka
n n n

The primed coefficients ar.e those of the fesulting bandstop filter. The unprirn-

ed coefficients are those of the bendpass filter. If this technique is combined
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with the lowpass to bandpass technique discussed in section B, then U-59 be-

comes

a2 n (-1)n b n

n " b + K(-1)' a 11-60Znn n

a' = b 0; q odd

q q

The unprimed coefficients are now those of the lowpass filter.

As an example of this technique, consider a normalized fourth order low-

pass Chebycheff filter with a I/a db ripple. The coefficients for this analog

filter are tabulated in many analog filter design handbooks and are given as

TABLE VI

Analog Fourth Order Chebycheff LP Filter
(1/2 db ripple)

A 0 = I B 0 = .379

A 1 = 0 B, = 1.025

A2 = 0 B2 = 1.717

A- = 0 B = 1.197
3

A4= 0 B4= 1

The coefficients for the lowpass digital filter with a 20 cutoff frequency (18:1

ratio of sampling rate to cutoff frequency) become (using the expansion proced-

ure associated with Table I)
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TABLE VII

Digital Lowpass Chebycheff Filter

(200 cutoff)

a0 = 9. 667 x 0 "  b0 = 1.271

-3
a1 - 3.867 x 10 b. = -4.410

3

a~ 5. 800 x 10- b2  5.896

* =3.867 x10-3  b3 =3.588

a = 0.667 x 10 b 4  837

Ut) izing 11-60, the bandstop filter coefficients are generated with K chosen as

K = 104 (an 80db attenuation). These digital filter coefficients are then given as

TABLE VIII

Bandstop Chebycheff Filter

(carrier frequency = 90 )

Bandwidth = 200

a= 1.71 b' = 10.938
00

a' = 4. 410 b' = 34. 26022

a4 = 5. 896 b4 = 63.899

a6 = 2. 588 b = 35. 082

a = .837 b' = 10. 504

An interesting feature of this technique is that the resulting "a" and "b" coeffi-

cients (Table VIII) are approximately the same order of magnitude, although the

lowpass filter's numerator coefficients (Table VII) are approximately 10 - 4 of the

denominator coefficients. In fact, it can be shown that as the lowpass filter's

bandwidth is made smaller, the "a" coefficients also get smaller. Thus, one
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can design a notch or band rejection filter with increasing notch depth as the

notch width gets narrower and still maintain a small dynamic range for the

filter coefficients. The bandpass and bandstop filter coefficients of Tables VII

and Vm are plotted in Figures 11-3 and 11-4.

The technique utilized here is analogous to placing the bandpass filter in

the feedback portion of a loop which has a forward loop gain of K. If a bandstop

filter were placed in the feedback loop, the resulting filter would be a bandpass

filter.

Various transformation techniques have been discussed for use in the

generalized design of lowpass, bandpass and bandstop filters. The concept of

normalization, common to all of the above, was noted to be of extreme impor-

tance in the design of digital filters. Techniques satisfying particular constraints

as well as various error considerations will be discussed in the following

sections.

31



4T" OPCOE 5AV4PAS
1.C H C-E.%(C HE F F r LT E

CSN'TER.F~~N.~O

SN*MMAETRICAL ABIOUT 50O

10 _ _ __4__ _

1W oo %t00 120" 1j0* 1 40c ISO5

32



ABOU

10

lo-(t

900l 1000 ic 0  120, 130" 146,0 150 t

FIUE1-4 -I T

p3



III. ARITHMETICALLY SYMMETRICAL BANDPASS FILTERS

A design technique was investigated which yielded bandpass digital filters

with equal ripple amplitude characteristics in the passband and stopband, having

arithmetically symmetrical cutoff characteristics, Filters having arithrretic

symmetry have application in many AM and FM problt-ns. Conventional analog

filters which have been transformed to bandpass have geometric symmetry prop-

erties, The approach taken was to design an equiripple or elliptic analog filter

at lowpass and then convert this filter to a lowpass digital filter through the use

of the bilinear transformation. Finally, th,-se filters were converted to a band-

pass digital filter while preserving the desired properties. Errors and constrain-

ing relations ainong the parameters are die, ussed. The foregoing procedures

will now be detailed.

A. DESIGN PROCEDURE FOR ELLIPfIC ANALOG FILTERS

It was desired to formalize a design procedure to be used for elliptic

analog filters. As discussed by Calahan! 5 ) this procedure can be formalized as

follows:

Consider the lowpass characteristic as shown below

IT~i

]4

+

Figure 111-1
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The equiripple characteristic is such that

a. at w = 0 IT(w)I? = K

b. at w = I IT(-) 1' K

1+

c. atw = IT(ul 2, K
1 +E

(w > w c defines the stopband; w < 1 defines the passband.)

With the above definitions, the following procedure is used

1. Calculate in = l/& M
C

2. Determine the order of the filter, N, by choosing N as the smallest

integer satisfying

N> K(m,) K(m)

K(m 1) ' (m')

whereI = I- m, M' I -rn' and

dx
K (m) J lZ

0 (1 - m sinZx)
1 / 2

which is the real quarter period of the elliptic integral of the first

kind.

N can be approximated for values of m near 1 and m' near zero by

N_ (2/T 2 ) in(4./El) In 8 /(w- 1)

3. Determine the zeros and poles of the transfer function from the

formulas

Z = -J

r 1 / 2 sn(R- K(m); m)

sn(t 4L K(m) + j r ;m)

35



Ii

where r = 2, 4, ... ,-1 N odd

r = 1, 3, .. ,N-1 N even

K(m) ac- (-Lj M
__= E K(m) sinh- I

NK(m') K(m') I

for m' near zero.

The term sn(.) is the elliptic sine and the term scl (4:rn) is the

elliptic arc tangent.

As an example of this procedure, consider the following filter specifica-

tions

Passband - 2db ripple 0 < W < 1

Stopband - Z5db min. 1.33 < w < c

For this example, the above parameters become

m = .566 K(m) = 1.909

El = .765 V = .438

E = 161 N = 2. 98 (choose N=3)

z= t j 1 47 p1 = -. 463 p= 129 t j. 962

With the above pole zero configuration, the resulting transfer function becorne:

G (S)= 3 + 2 + 2. 16 I-I I
S + .721S 2 + 1.061S + .437

Using the above approach, several lowpass elliptic filters will be synthesized

and then digitized using the bilinear transformation.
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B. DIGITIZED LOWPASS ELLIPTIC FILTERS

The general pole-zero configuration for a lowpass elliptic filter is shown

below.

X' I ItI

%Qo
X POLE5 -

Go ZEIR05 Z4 = t+jj

The pattern shown is fo:' a seven pole, or seventh order elliptic filter. The pole

positions for these filters lie on an elliptical contour. The values for these

poles and zeros were determined so tqat they would satisfy the following

specifications:

Passband Spec. < .5db xipple 0 < w< I

Stopband Spec. 60db min. 1.25 < W < oo

A seventh order filter with the following characteristic was found to

satisfy these requirements.
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TABLE I

P0 = .3889 z 2 = t j2.391

p1
= .0377 t j 1.01Z0 z 4= t jl. 2711

P3 = "1399 t .8939 z6 = t j 1.4709

P5 = Z93Z tj .5731

Applying the bilinear transformation to this filter with a sampling rate

equal to 4 times the cutoff frequency -- or a normalized cutoff at W T 900u

(K- = tan(45 ° ) 1) yields
U

7

L a Z-n

H(Z) : 0 111-2
7

Z b Z
-n

n= 0

where

TABLE 1.

a 0 = .556 b 0 = 12. 25Z

a I = 2.007 b 1 = -14. 381

a Z = 4. 254 b2 = 30. 397

a = 5.976 b., = -Z6. 018

a 4 = 5.976 b4 = 24.095

a 5 = 4.254 b 5 = -13. 421

a, - 2.007 b = 5. 917
6

7 = .556 b7 = 1.519
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A plot of this filter is shown in Figure III -2.

A second design was carried out for a fi.lter with greater attenuation in

the stopband but a larger transition region. The specifications on this filter

were

Passband Spec. < . 5db ripple 0 < W < I

Stopband Spec. 90db in. 2 < W < I

A seventh order filter with the following pole zero pattern was found to

satisfy these requirements.

TABLE III

P0 , 323 zZ = j 4. 354

p = .057 t j 1. 016 z 4 = t j 2. 044

P 3 = 17. + j .841 Z 6 = _ 2,4,)0

P5 = Z78 j .486

Applying the bilinear transformation to this filter with a normalized cutoff at

W T 90 yields

a Zn
n= 0

H(Z) = n=7 111-3

b Z
-n

n
n= 0

where the coefficients a and b are as given in Table IV.n n
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TABLE IV

a0 = .744 b 0 = 11.077

a, = 4. 075 b I = -16.234

a 2 = 10.465 b Z = 28.883

a 3 = 16. 17Z b 3 = -27.885

a 4 = 16. 172 b = Z3. 359

a 5 = 10.465 b = -13. 562

* 6 = 4. 075 b6 = 5.630

* = .744 b7 = - 1.371t7

A plot of this filter is shown in Figure 111-3.

A third elliptic filter syrthesized was that discussed in Section A with

the normalized cutoff frequency at W T = 200. The characteristic for thisU

filter is

3 a Z- n

n

1-( 3 111-4

vb Z-
n= 0

where

TABLE V

a 0 = .188 b = 1. 162

a -. 141 b I = -3.087

a = -141 b- = 2. 847

a 3 = .188 b 3 = .903
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A plot of this filter is shown in Figure 111-4.

A technique which ronverts these lowpass digital filters to bandpass

filters will now be discussed.

C. APPLICATION OF THE SHIFTING TECHNIQUE

It was initially decided to utilize the filter of Figure 111-4 for the synthe-

sis of an arithmetically symmetrical bandpass filter. The technique used is the

shifting technique described in Section II and qualitatively consists of shifting

the lowpass characteristic to the left and to the right by an amount (in degrees)

equal to the normalized center frequency. As discussed, this is simply the

digital counterpart of multiplying a time waveform by cos w t and observing the

resulting spectral plot.

The required equations for this transformation are given in Section II as

M
A n a b cos w T (n -2r)

n Jn-r r o
r=0

111-5
M

B = Z b b cos ,T (n -Zr)
n-r r o

r=O

where the "small" a's and b's are the numerator and denominator coefficients

of the lowpass filter and the "capital" A's and B's are the corresponding band-

pass coefficients. From this equation it can be seen that the bandpass coef-

ficients are obtained by a weighted convolution (or correlation) of lowpass

coefficients, where the weighting function depends on the desired carrier fre-

quency.

Utilizing these equations with a normalized center frequency of

T = 900 yields
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i

3

A n Z 2 n

n=0

H(Z) n 0 IU-6

Z BZn Z 2 n

n= 0

where

TABLE VI

A0 = .219 B 0 - 1.351

A .2 = 063 B 2  2.910

A 4 = .053 B 4  2.528

A6 = -. 170 B 6 = .816

A plot of this filter is shown in Figure 111-5.

A detailed computer analysis of the magnitude characteristic of this

filter shows that this filter is arithmetically symmetrical about 900 with no

symmetry error. A detailed comparison of the lowpass elliptic filter in Figure

111-4 and the bandpass filter in Figure 111-5 shows that the passband error

between these two filters is less than 1/2%. These errors are due to the tails

of the shifted characteristic extending back into the passband of the filter.

Based on the above results, it was conjectured that the symmetry error

can be reduced to zero. The following derivation will show this to be so for

particular values of the normalized (with respect to the sampling rate) carrier

frequency.

In comparing Figures 111-4 and 111-5, the factor of Z from Eq. 11-47

must be included.
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D. SYMMETRY ERROR AND CHOICE OF CENTER FREQUENCY

Consider the lowpass filter to be expressed as a function of angle, that

is FLP(O), where 0 = JT and w is the digital frequency and I/T = f6 ' the sam-

pling rate, Now due to the periodicity of digital filters one has

FLP(0) = FLP(e + 2 Tr) IW-7

Because of symmetry requirements

IFLP(8) I IFLp(-8) 1 II-8

Therefore

IFLP( - T  + T ) + e IFLP{Tr ( 0) 111-9

Now

FLP(-r + 0) = FLP(-Tr + ( + Z) = FLP(I + 8) III-10

or

IFLP(Tr + 0)1 = IFLp(l -( )T rI-I

From the discussion in Section II, it can be shown that the bandpass filter result-

ing from utilizing this shifting technique yields a bandpass filter FBP(e) given

as (neglecting a scale factor of Z);

FBP(O) = FLP(0 + 0 o) + FLP(e - 0 o ) Ill-la

where 0 = WoT and Z; is the desired center frecouencv.
0 0 0

Now consider the response of the bandptss filter at a distance 4) (in angle)

away from 0 . Thus,0

FBP(8° + ) LP(Z 0o + + FLp( )
111- 13

FBp(O -( ) 0 FLP(Z - 4) + FLp(-4)

In order for symmetry to exist at bandpass, Eqs. 111-13 would have to be such
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that

M BP(v r +od or= FBp(0o " )1 III-14

Moreover, : order for there to be no shifting error from lowpass to bandpass,
one requires that

FBP(o + 4') = FLP()

III ° 15

FBP(00 - 0) = FLp(- 4 )

(or, the above modified by a scale factor).

As can be seen by comparing Eqs. 111-15 and 111-13, this latter error is

LP-BP SYM. ERROR = FLP(20 ° + -) 11-16

or

FLp(Z -

Consider the case where Eo = ir/Z. This choice of center frequency is equiva-

lent to a sampling rate of four times the center frequency. That is

zrr T
0 0 -6o wT -- = 111-17

s s

For the above choice of 0 , Eqs. I1-13 become

FBP(Eo + 4) = FLP(, + 4)) + FLP(4)

FBP(0 ° - ) = F L ( - 4)) + FLp(-4)

From Eqs. 111-9 and 111-11 Eq. 111-18 becomes

FBP(8o+ )= Ml < A I + M 2 < L 2 = K < a 111-19

FBP(o P €) = Ml <-AI + M 2 <-A 2 = FBP(eo + 0)

Thus for a 4 to 1 ratio of sampling rate to carrier frequency there is no sym-

metry error at bandpass. The error between the lowpass filter and the
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bandpass filter is given by

F Or + 4)) M < A

LP 1 1112

or

FLP(7r- )= M I < -A I

However, since the filter passband extends for t 20 (see Figures 111-4 and

111-5), M 1 is extremely small within the filter passband. It can be shown that

for the example under discussion, the maximum passband value of M= . 03

yielding an error of approximately 1/Z. l

Consider now the interesting cho'.ce of 0 = r. This corresponds to a

tmo-to-one ratio of sampling frequency to carrier frequency. With the above

choice, Eqs. 111-13 become

F BPOo + 4)) = F LP(2 Tr + 4) + FLP() :2 FLP()

111-21

F p( -() = FLP(2r -2) + FLp(-) ZFLp(O-)

since

FLP(Z2r + 4) FLP(O); FLP(Z r - ) = FLp(O-)) Ul-22

Thus for tris choice of 0 0there is no symmetry error at bandpass and nc shift-

ing error from lowpas.J to bandpass.
The above choice of (0 was applied to the lowpabs elliptic filter described

o

in Eq. 111-4 and Table V. Utilizing the technique discussed, the bandpass filter

is given as

6
A Z-n

HBP(Z) _ 6 0  111-23

X B Z'nn

r- 0
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.- -- -= . -... . = -- .- --- - -ct.: rk - [ ... - - - - --o 7 = . . .

where the filter coefficients become

TABLE VII

A 0 = .21875370 B 0 = 1.35144968

A = .74456616 B = 7.17729147

Az = .80670596 B 2 = 16. 1488383

A 3 = -. 08252552 B 3 = 19. 6781117

A = -.85454586 B 4 = 13.6836573

A 5 = .66294855 B = 5.14441316
5 5

A = -.17000589 B = .81623837206 -6

A plot of this bandpass filter is shown in Figure 111-6. A comparison of the

computer print-outs for this filter and the equivalent lowpass filter bears out

the foregoing analytical conclusions.

It is of interest to note the recursion equations which result from the

above choices for 0 . In general these recursion equations are0

M

A= a b cos[o(n - 2r)]
n 4- n-r r

M 111-24

Bn = b n-r cos[Oo(n- Zr)]
L .

where 0 = T.O 0

For 0= - (a two-to-one ratio), these equations become
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'M

A (-1 N a b
n3-' n-r r

M lI'-T25

B - (-1) n V b bn!n -j r n-r

rz 0

Thus, the bandpass filter coefficients (A n Bn ) are the result of convolving the

appropriate lowpass filter coefficients (a n , bn) with each other. Since a digital

filter performs the operation of convolution, this suggests the following auto-

mated procedure to generate the bandpass coefficients once the lowpass filter

has been implemented. If one assumes that the lowpass filter has been synthe-

sized using the direct form and the "x bank" or feed forward section is

impulsed, then the outputs are the "a" coefficients. If these outputs are fed

into the "y bank" or feedback section, its outputs are the "A" or numerator

coefficients of the bandpass filter. The "B" coefficients can be obtained in a

similar manner using only the feedback bank. This procedure appears to be of

advantage in that the lowpass coefficients can be altered and the lowpass filter

itself used to generate the bandpass equivalent.

The equations analogous to lU-5 for 00 7 T/2 (a four-to-one ratio) are

M

An (cosn ) . (-1ra b

n-r r
r=O)

B =(Cos n (-1)'" (-1b
n Tn-r r

r= 0

This approach is not limited to any one implcmcntation.
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A sbinilar iznplemei,'ation an bc utilized for thL above. It should also

be noted that A and B are buth zero for n odd. Thus, although the lotal delay
I TI

required for both bandpass filters are the same, only half the multiply-add

operations are required when a four -to-one ratio (fs/ r = 4) is used.
s 0

E. APPLICATION OF THE LP-BP TRAkNSFORMATION

In Section 1I, the lowpass to bandpass transformation

1 - '(Cos w T) Z + Z
S 011 -Z7

K (I - Z )

was utilized in the design of bandpass digital filters. Mention w.a also made

of the simplification resulting from adjusting the sampling :;.'; to be foir times

the carrier frequency. This choice causes 'I -. T/2 and Eq. 111-27 becomes

I + Z-
11-2

K .3.I - Z - -

It is desired to investigate the application of the LP-BP transformation to the

design of arithmetically symmetrical filters for tne above choice of normalized

digital center frequency. This transformation is recognized as being that of the

lowpass bilinear transformation with Z - replaced by -Z -
. Since - -Z can be

written as

-z .j eJ2T Zj(T t
_ - =e e 111-29

This transformation can be viewed as a shift of 900 accompanied by a scale

change by a factor of 2. Thus, with these parameters, a lowpass filter
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N

aZ
n

II~ ' Z -n= 0

= 111-3o

b Z-nL.j fl

becomes

N

a an(-1)" -2n
n:

HBP(Z) N 111-31
Z_ bn(- )n Z n

n= 0

Now, consider the bandpass filter evaluated at (0 + ir/2) = 7T. Equation 11-31

becomes

N

n -jr n -ZjnOLa(l e' e
HBp( Z) = Ifl-32

-- Xbn-1) e-jl
r 
n -j 2nO

n---0

N

a
1.j n

H BP(Z) 111-33

b e - ZjnO
- n

n=O

This is recognized as being identical to the lowpass filter evaluated at ' 0.

Similarly, HB1(r/2 - 0) = HLp(-20). Thus, this technique yields an arith-

metically symmetrical lowpass filter with no symmetry error either at band-

pass or in the shift from lo.pass to bandpazs. Two txarmplcs of this tucc.iquc

are a 4th order Chebycheff lowpass filter and a 10th order Buttei worth lowpass
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filter that havc been shifltd to bandpas-. 'lhr cocfticients for these filters are

TABLE. VIII

10th Order i3utterworth

Lowpas- CoefficicnIk, L3andpass Coefficients
t ai (' Z )= 1 "r=, /zi

0 0T

Numerator Denominator Numerator Denominator

a 0 = 1 b =345. 252 A = B, 34S, 25Z
00 0 v

a = 10 b = -4 x 10- A) - - 10 B= 4 x 10 - 3

a 2 = 45 b = 462.771 A 4 = 45 B 4 =462.771

a 3 = Iz0 b 3  8 x 10 3  A 6  - 120 B 6 = -8 x lo-3

aa = 210 b 4  18b. 270 A 8 = 210 B 8 = 188.270

a 5 = 252 b 5 =-8 x 10- 5  A 0  -252 10 8 x 10-5

a 6 = 210 b 6 = 26.6! A 1 2 = 210 B 12 = 26.613

a,, - 120 b, = -9 x 10- 3  A = -120 B = 9 x 10-3

14 14

a8 = 45 b = 1.093 A16 = 45 B16 = 1.093

a 9 = 10 b 9  -4 x lo-3  A 1 8 = - 10 B 1 8 = 4 x 10-3

a 10= 1 b 10= .024 A 2 0 = 1 B 2 0 = .02-4

(A n0; n odd) (Bn  0; n odd)
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TABLt_ F:\

4th Order (hebychff

Lowpass Coefficients Banldpass Co-lfici-iitb

tan( JT/2) = .17633 (2:00 cutoff) 0 T =/

Numerator Dc nomni nator Nuineraior l-(-non ina toi

a 0  1 b 0 = 5.319 A 1 B 0  5.319

a =4 b = -2.828 A 2  -4 B 2 = 2.828

a - 6 b 2 = 4.841 A 4 = 6 B 4 z 4. 140

a =4 b 3 = -2. 140 A 6 = -4 B 6 = 2. 140

a 4  I b 4 = .870 A 8 = 1 B 8 = .870

(A n  0; n odd) (B n = 0; n odd)

These filters are plotted in Figures 111-7 and 111-8.

It is of interest to note that the scale change caused by this transforma-

tion yields a bandwidth at bandpass that is t ne half that of the lowpass filter.

Thus, for the 4th order Chebycheff filters the bandwidth is + 200 at lowpass and

+ 100 at bandpass. Of course, since these bandwidths are normalized to the

sampling rate, the actual bandwidth can be controlled by this rate. it ±nould

also he noted that the filter coefficients generated are obtained directiy from

the lowpass design. By contrast, the shifting technique used in the foregoing

yields a more complicated structure. Fur example, the third order elliptic

filter of Tabie V !ad bandpass coefficients using the shifting technique as gien

below. The ccefiicients obtained through the :LUlStitutio) Z-1 ,-2 are show'-

in arcnthcsis in Table X.
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TABLE X

Elliptic Filter Coefficients

A .0 .219 (.188) B 0 = 1.351 (1.16Z)

A- .063 (.141) B 2 = Z. 910 (3. 087)

A.4  .053 (-. 141) B 4 = 2. 528 (2.847)

A6 =-.170 (. 188) B 6 = .816 ( .903)

Although the coefficients are similar, those of the shifting technique are gener-

ated through a convolution formula, whereas those of the present technique, by

a simple sign change. Thus, if it is possible to use a 4:1 ratio, the LP-BP

procedure is preferable. For other ratios, however, the LP-BP procedure

does not yield satisfactory results.

Two approaches to the synthesis of bandpass digital filters having arith-

metic symmetry properties have been discussed. The shifting technique was

found to be of general applicability and was shown to yield negligible errors

under appropriate choices of the ratio of sampling rate to desired carrier

frequency. The equations relating the coefficients of the bandpass digital filter

to those of the lowpass digital filter were shown to be in a form convenient for

"on line" synthesis. Lastly, the LP-BP transformation was shown to be an

excellent (and simple) technique if the problem constraints allowed the use of

a 4:1 ratio of sampling rate to carrier frequency.
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IV. NONRECURSIVE DIGITAL FILTERS

The design of a nonrecursive (i.e., finite memory) digital filter consists of

choosing coefficients h n so that a frequency response characteristic of the form

N

H(Z)= E hnZn Z "1 = e -jT IV-1

n= 0
-! -jeT

has the desired shape. Frorr, this equation it is seen that with Z = e

H(Z) is represented as a finite Fourier series with coefficients h n . The overall

Since the input-output equation of a nonrecursive filter is given by

N

Yn = E hk Xn-k
k= 0

it can be seen that the output samples are a function of the present input as well

as past inputs up to the upper limit of the summation. Thus, N is often refer-

rcd to as the memory of the filter.

**The link between nonrecursive digital filters and analog tapped delay

line or so-called transversal filLers can be seen by noting that the input-output

equation corresponding to IV-l is given by

N
Yn = ~ k Xn-k

k= 0

whereas that of a transversal filter is given by

N

y(t)= A k x(t - kT)

k= 0

Thus, if the output is sampled at times t = NT the hk and Ak are equal to one

another. The Ak are the tap weightings.

60



question is, how does one choose these coefficients in some optimum manner,

or, from what time function do these coefficients come? If the nonrecursive

filter is viewed as the finite memory counterpart of a recursive digital filter

which has been synthesized through a transformation technique applied to an

analog filter, the h coefficients can be related to the impulse response of the

analog filter. If the standard Z transform were applied to the analog filter,

then the h can be shown to be related to the first N + I amplitude samples ofn

the impulse response of the analog filter. If the bilinear transform were applied

to the analog filter, the h coefficients would be related to the first N + IS n

coefficients in the Laguerre expansion of its impulse response. Still another

approach is to expand the desired frequency response in an infinite Fourier

series and then choose the first N + 1 terms or some modification thereof to be

h coefficients.
n

Inherent in most of the above procedures are two general sources of

error between the desired frequency response and that flinally obtained. The

first error is that generated by the particular transform technique utilized.

This error can normally be controlled and contained within tolerable limits.

After obtaining a satisfactory design, this set of coefficients is truncated to

achieve the finite memory indicated in IV-l. This truncation procedure is

equivalent to multiplying the time function represented by the infinite set of

coefficients by a pulse of extent N T. This procedure produces an error equiv-

alent to convolving the infinite memory response with a sin x/x (in frequency)

form whose central lobe width varies inversely with N, the memory of the

filter. While this is true, it appears desirable to have considerably more con-

trol over this type of error.

The nonrecursive design technique to be discussed in the following sec-

tions include design procedures from tabulated frequency data, a digital
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impulse invariant technique and the process of zero removal and relocation as

they apply to nonrecursive filters.

A. NONRECURSIVE DESIGN FR(;M TABULATED DATA

'The majority of design procedures are precheated on the existence of a

coitinuoub function of trequency. Often, however, the amplitude and phase

characteristics of the desired frequency response characteristic are avai.able

only at discrete points. Thus, a design procedure was investigated for this

application. With the nonrecursive filter of IV-I rewritten as

N_ N -j z TT/f

H(Z) h e-jnu)T L h e IV-2L-i n Li/ n

n0 n=0

where f I/T = sampling rate, and the desired frequency response dita
s

(magnitude aad phase) gi-\ 'n as 1(fIi where

kf S

f f + -1C k = , ... , - I IV-3

the h coefficients were determired so that the sum-squared error is minimized.
n

With the above assumptions this sum squared error can be written as
P- I N f/fl

i \" -j r i r

S = ( V hne k 1V-4

Taking a partial with respect to the digital filter coefficient h setuing

the result equal to zero and utiiizing 1,.-3 yields

R f -2 r N -j 2Tr (f + n) R -- 1 -J T (I + n) -

0-" ~~ h '
k -' n ,.

0 n= 0 k 0 I\ -5

With the use of the identity
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Z- IV-6
I -Z

k= 0

Equation 17-5 becomes

i k fl I

- N - 'T (i +n)-f- -j2 r(1 + n)
fh s -e

,' H(fk )  S e x
k 0 kn=0 I -j~ ~ en

IV-7

If it is desired to synthesize ih( responsc over a half-period, then f = 0,

R = K/Z (K even) and IV-7 becomes

K2 -  k N
-j Z Tr v

h IV-8H (f k)e nZ~ h31 R e 7n-,1 - e/
k 0 n 0

for (f + n) odd and k > ZN, zero for (f + n) e'ien.

Although the above equations can be used to determine the required hn,

iP was noted that a considerable simpliication comes about if the desired digital

filter can be written in the form

N

H(Z) : h Z-n iv-9
Sn

n -N

For this case, a development paralleling that discussed Tbove leads to

f k
F- (f. e h= e x j Z r( -n7k 0 n=N e I K j '~

IV-1o

-As .uming that(I +4 /K is not an integer, the term in the square brackets is

equal to zerc, except fir n -£ In that case, the form of !V-10 redues to
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f0h . = s ; K > 2N IV - I11

For synthesis over a full period f -f /2 and h, becomes

fk

f K - k j2itITh l S ) e - j ' I + , A (f + s jT
h- L k

k= 1 IV-12

Equation IV-12 is recognized as being equivalent to a trapezoidal integration of

fs/ Z j 2 -r I -

s - 7 I-1
h J H(f) e df IV-13

T-i/
s

where H(f) is defined on K points over fs"

To obtain an expression in terms of magnitude and phase characteristics

one notes that

-{(-f) H (f)= A(f) e -  9(f) IV-14

where A(f) is even and Esf) is odd, then h I becomes

h 2 A(f) cos 0(t) - 2r f df IV-15
co 1 t ffT-

s o

or

f N f 1
h, A(0) + Z A(fk) cos O(fk) - Tr. ± (-I) n A(--) cos 8(---) _

k=1 1.IV-16

Thus, relationships have been derived (IV-12 and IV-16) which can be utilized

to design nonrecursive digital filters from tabulated data.
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B. A DIGITAL IMPULSE INVARIANT TECHINIQUE

It is often of interest to synthesize a nonrecursive digital filter which

approximates (in sonie sense) a recursive digital filter. Thus, it is assumed

that the recursive digital design satisfies the filter requirements, However,

it is desirable to eliminate the feedback terms (b. coefficients) and obtain a

nonrecursive form which requires the same amount of processing. Thus, the

restriction might be such that the synthesis is to be carried out so that the

total number of coefficients are the same for both recursive and nonrecursive

de signs.

Consider the transfer function of a recursive digital filter given as

N

V a Z
-n

n= 0
HR(Z) = IV-17

Sb Z
-n

n
n 0

By dividing the denorninator into the numerator IV-17 can be rewritten as

HR(Z) C Z IV-18

n---0

where the C are related to the a and b byn n n

a

0

(a -b Co)
CI b IV-19

0



or, in general by

amin [k, M] b.
_U _ a k-- j

0 j=l 1

where M + 1 is the number of denominator coefficients and the summation runs

from j = 1 to the smaller of the two values k and M.

rhe nonrecursive digital filter is then of the form

N

-INR(Z) = ' h Z-n IV-21

n=0

rhe question is -- how should the h's be chosen? Or, what is the relation-

ship between the h's and the C' ? If the h's are to be chosen to yield a

minimum mean square approximation to HR(Z), then the h should be equal

to the Cn up to n=N. The justification for this is that IV-18 is in the form of

an infinite Fourier series and IV-21 is in the form of a truncated Fourier

series. Furthermore, if H NR(Z) is t- approximate a recursive filter synthe-

sis through the use of the bilinear transformation, then the desired shape.

should first be synthesized with a bilinear transformation and then the C's

of Eq. IV-'1 obtained through the use ol Eq. IV-20. The conventional

approach is to approximate the desired shape directly with a Fourier series

and then truncate after a given number of terms (equal to N + I in the exam -

pIe).

A comparison of the various approaches is shown in Figure IV-1. The

ideal filter to be approximated is a rectangular filter \,hose bandwidth (cut-

off frequency) is equal to (1/4) of the sampliig rate (i.e., 7 T = 900). The

bilinear approximation illustrated (curve 1) i- a digitized 4th order
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Butterworth filter with a resulting transfer function

S+ 4 + 4Z + 6Z 2 +4Z -3+ Z -

R 10. 64+ 5. 17 Z + . 188 Z

The above equation was obtained utilizing the transformation technique dis-

cussed in Section II. Curves 2 and 3 are obtained by applying Eq. IV-20 to

Eq. IV-2Z yielding a set of nonrecursive coefficionts Qiveri ?s

TABLE 1

C O = .094 C1  . 376

C 2 = .518 C 3 = .193

C4 . 159 C 5 = 1 101

C6 = .068 C. .045

C8 = .030 C 9 = .020

The nonrecursive filter given as curve 2 utilizes C 0 through C The filter
0 9.

of curve 3 utilizes h through h.
0 7

Curve 4 is obtained utilizing a conventional Fourier series expansion

of the ideai rectangular filter. Thus the coefficicnts can be shown to be

I
n0 -

I\V -23
h h sin n r/2

n -n 1) Tr

where

1U

114 4 , " IV-24

u=O
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A
As can be seen from Figure IV-1. curves 2 and 3 represent signifi-

cantly better approximations to the bilinear recursive form than the conven-

tional Fourier approximation. The ripple characteristics in both the pass

and stopbands have been reduced. Another comparison of these various

filter forms is shown in Figure IN' 2. here each of the four filters accepted

a step at its input and the filter outputs computed. Table II summarizes the

results.

T 'PT-E II

Filter Outputs (for Step Input)

Fourier
Bilinear 10 tc.-ni Approx. 8 term Approx. Approximation

Outputs (Curve 1) (Curve 2) (Curve 3) (Curve 4)

YO .094 .094 .094 ,064

Y1  .47 47 47 .064

Y. 985 .988 - .042

Y3 1.181 1.181 1.181 - .042

Y4 1.022 1.022 1.022 .276

Y5 9Z1 .921 .921 .776

Y6 .989 .989 969 1.094

Y 1.035 1.034 1.034 1.094

Y8 1.005 1.004 .988

Y9 .984 .984 .988

Y1 .998 1.053

Y 0 lo 1.f000
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From this figure, the improvemnrt in curves 2 and 3 as an approxinmation to

1 (over that of the Fourier approximation, curve 4) is evident.

The approxima3tion technique used to obtain curves 2 and 3 can be

terined a "Digital Impulse Invariant" technique in that it yields an approxirma-

tion to the impulse response of the recursive (bilinear in this case) filter

which is exact up to the truncation point -- that is, up to the last coefficient

retained. This procedure is the digital counterpart to the conversirn of an

analoL, filter to a digital filter through the use of standard Z-transfnrrns.

This approdch yielded a point for point match with the analog filter's impulse

response. Still another interpretation of this tzchiue is that the bilinear

transformation 'rounded' the corner of the ideal filter of Figure IV-l and

therefore this impulse invariant technique provides a simple procedure for

smoot!n- or mo'difying thte Fourier coefficients. Lastly, this procedure is

simple to implement.

C. ZFJRO REMOVAL, AND RELOCATION

As noted previously, ther- are often t%,.o sources of error inherent in

the design of rion-, ecursive filters. The secoad of these errors was due to

the truncation procedulre nsed to yiold a finite memnory filter. A possible

approach to nonrecursive filter design is to viewv the problem in such a way

that the second source of error appears to,. be abz-cnt. Thi-s is accornpiishod

as, follows: From Eq. IV-l, one can view the N+ 1 unknown coefficients as

amplitude samples of so~ric time w.aveformi. Thus, this time waveform- is

finite in extent (all other samiples arc actually equal to zero) by definition and

not due to trun~ation. \!iewe-d in tis:: manner, the frequency response

characteristi,.s a chievable are those v.hose tiransiornis are fi:.-itu puls es.

Ide~ally, it would be desirable to have the complete mapping of all finite pulses



and the variety of frequecy resiponsea they yield. Th1n 011C would choose9 the

response "closest" to the one decsirvd and then sample the finite pulse at ati

appropriate rate. Alth;ough the above mapping was not accmpli:-hcj, the

following will illustrate the proce-dure and will -e rye to tic tuget her the.

varousaproahe to nonrccvrsive din

Initially a characterization of finite Pulse-- was des;ired. As noted by

(6)
Carnpbe)', et. al, a pulse (in time) of finite vxtent is colnplctely character -

ized by the fact that its trans form (com~plex Fouriker) has an1 infinlite set )I

4eros . This isi most easily seen by noting a rectangular pulse and its siii/

transform which consists of an1 infinite number of zero.,- uniformlyr di -tributeci

Over Li~e rea frequency axis. Subject to certain constraiitS (7 these Loros

can bt. removed and/or relocated to alter the freq' :e7 cy clip racturistic wvhile

still retaining the finite pulse. structure of the time waveforin.

Perhaps the simplest illustration of the process of zt-ro removal is, to

consider a rectangular pulse existing for It! < 1/2. If the. first zero pair is

removed, it can be shownu that the resulting pitdse iF. of the formn

(I + cas Z-n t) p(t) V2 5

w~here p(t) is tht- rectangular pulse ex-iStin& ove-(r Iti <

Thus, -,he familiar cos x weighting function carn be viewed in tho fre -.

quency domain as a multiplication o'. the sin x/x formn by a factor (1,11 - fT

Similarly, the formn of the pulse, as a result of removing N zeros fronm a

rectangular pulse whose- extent is from --. < t < n can be shiovn to be1

g(t) 11I A c o s r (t 4 t - IV -26

w hero

7 I



N N

A 7Tr 7T r -IV -,

k/t

.iih theC ivrob of thc rmc tit r~ pulse il- at -r 1-1 r I" -r

Iisolxx iN -\ it c all bc ho'it- l 01.t ((') thc Vour ik r t ransfIormi of g (t) is

% T1 si I r I -. T -. i Tt k In 7T ( k k
C(;) I It 'T \1 1 1______ 42

r N i1T.

G (W) T1 l s ' w A. cous T, -_ -7 2 IV -28

L

'li Vu s, thc shape Al the pulse, iii thc I r equt ixc y d owin iiis detP. rmiiced by a

NA~tightod sunmmation of delayed sin x,/x wavt. *ormb.

Y0'r- i U! of ilitC kXtV14t. it call ilso be ;c w that its Fouricr

tra,Iorn :oi be wvrittent at

4_X)

Owiu A 1. kor 11ic it rxs w~h ich arc de tC rlio i1Ced by the zeros .dle

Jia simiiar ma nn t va finite (. os % puilst, (-a be olude tir oug4h thec

SSo of 0 ZerTo ret ixaliOn in the following mannc r. As surnt. a rec tanigular

polse ok cr the interval It ' T ltS tran1sform Cai be' shown to Uk, of the

C,(w) 2r S TTr W IV-3 0
IT W

"vith Zeros ocClurr~i~g at. + I, +



Now, if the kth zero-pair is moved to the location of the rth pair, then

G(w) becomes

(r) IV -3]

k

The corresponding time function becomes

gl(t = 1 - cos k(t+ir) Iti < TT IV-32

where r = /k. Thus, one now has independent control over thu amplitude and

frequency of this tirne function.

Since the family of raised cosine pulses are used frequently as weight-

ing functions, the transforms of these pulses were obtained to note their

relationship to the process of zero removal.

If one aasumnes a fainily of raised cosine pulses of the form

g(')T IV -3

- 0 othervwise

Then G(f), the Fourier tran.;..orm of g(t) can be shown to be

=T n! cos Tr fT
S(f-) - -; n Odd IV- 34

77" 1 jk+l1 - 'iT tj

or
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G ~ ~ 2f rsin n fT nee V3

G =f) 14 k (I~~.1 - T k7)neen IV]

Note, the tormn of IV -15 is Fsuch that a cosine pulse raised to an even power of

n is equivalent to remnoving the first n/2 zeros cnf sin(Tr f T)/Tr fT. These

ersoccjur at f k'' Jo ,2 n/2 and are those removed by the

factor (I -T I f 2k 2.

lYro:n l-.IV -3 5, a link car. be shown to exist between the process of

z( ro ren'ova, zinodli1iLd or wetighTed Fourier series, and the technique vro-

nos'jd bV B1:1, Ji This - linr-i is illustrated as follows: Consider the syn-

the sis of a,, arhitrary pulse given by

f (t An Cosn~ t < 2-IV-36
n T

n= 0

Thiis synthesis can be view~ed in two sectiosis. First over even n and then

o';ei odd ii. Those raised cosine puls-es over even n are equivalent to a

~'ej-Ihtcd addition of zterc) rernoved si-n x./x pulses. A cosine pulste raised to

, n odd power of n car- bc viewed as the product of an even power (n - 1)

multiplied by cos5(7, t/'T). T1hus its trans formn can he written in the form of

Eq1. IV-J - ,ith a s-hift to ite left and right (in frequency) of (1/2 T). Equation

V-30 i:, 1lierel1orc a vri,9itc.d siamtion of zeru removed z~n~f T)/Tr fT

Pill 6es

ik- relatic'xshnip butween Eq. IV -316 and a Fourier series expansion

-A obai-,wd I.,% rctin-s the' tOtrn A 1 L.-byche ff polynomials. These poly -

nomnials arc de-fiined as4



V n(x) = cos(n cos- x) IV-37

and if x = COB 0

V (x) = cos n0 IV-38
n

then a trigonometric polynomial or Fourier series

N-I

f(0) = B cos nO IV-39

n= 0

is equivalent to a polynomial in x given by

N-I

f[cos-x] = , C xn  IV-40
ni0

The relationship between the B n and C coefficients relate the expansion offl n

IV-39. That is, the C are identical to the A for x = cos(w t)/T. The poly-S n n

nomials given by Eq. IV-37 relate to B and A coefficients. The proceduren n

would be to first expand a function in a Fourier series. Then, through the

use of the Tchebycheff polynomials, calculate the C n coefficients. Using

equation (or expansion) IV-36 expand the function yielding the A coefficients.• n

Then relate the A and B coefficients yielding a weighted Fourier expansion.n n

Blackman's technique involves the synthesis of a desired character-

istic in the frequency domain through a sumnmation of raised cosine pulses of

the form

N-I

_H(coswT) 12 h cos o T IV-41n

n 0

where w is the digital frequency function. Thus Blackman's technique is a
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synthesis procedure with raised cosine pulses in the frequency domain and,

therefore, zero-removed sin x/x pulses in the time domain. His procedure

attempts to link the h coefficients with those given byn

N-i

H(Z) = Z a n IV-42
n= 0

Although the process of zero removal and relocation was not extend-

ed to yield the complete characterization of finite pulses, it did illustrate

the tie-in among the various synthesis techniques. These techniques all

center about a finite Fourier series approximation in some form, whether

it results from truncation of the infinite Fourier series expansion of the

desired function, the truncation of the infinite Fourier expansion of the

characteristic obtained through the bilinear transform (as in IV-B) or the

discrete version discussed in IV-A.

Two basic procedures which can be used in the design of nonrecur-

sive digital filters have been discussed. The first procedure was based on

the assumption that the desired frequency characteristics were available

only at discrete points. The second approach proceeded on the assumption

that a satisfactory recursive design was available. These recursive coef-

ficients were then converted to a nonrecursive design with illustrative ex-

amples indicating the simplicity of the technique as well as improvement

that this technique offers over the more conventional Fourier series approach.
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V. ERROR CONSIDERATIONS

As noted by Kaiser, ( 9 GoldP and others, there are essentially

three sources of errors associated with digital or discrete time processing.

The first error results from the sampling and quantizati .n of the input

signal. The second error is due to the representation of the filtering coef-

ficients with a finite number of bits. The third error is one of computation-

al quantization. That is, the digital filter is an arithme'ic unit which per-

forms the operations of weighted multiplication and additions. There arc

therefore errors caused by roundoff of these results which are often

utilized* in further computations.

In this section, various aspects of the latter two types of errors

will be discussed. The relationship between coefficient accuracy, stabil-

ity and critical filter parameters will be detailed as well as the effect of

alternate synthesis or implementation procedures. The relationships

between computational quantization, normalized sampling rates and various

implementations will be discussed along with an error reducing procedure.

A. STABILITY AND COEFFICIENT ACCURACY

II
It can be shown that the evaluation of the denominator of the digital

filter transfer function H(Z) at the point Z -  1 gives an indication of the

maximum allowed variation of the digital filter coeffi,,_ents for stability to

be maintained. For a digital filter of the form

In recursive or feedback type filters, prior outputs are rcpro-

cessed.
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N

n = 0

H(Z) 0 "V-1

V b Z -
.d n

n=0

this index is of the form

N

= - b. V-2

j=I

or as it is more conventional to divide through by the b 0 coefficient, this

index is given as

N b
F 0 =_ V-3

The tabular approach to digital lowpass filter synthesis utilizing the

bilincar transform as discussed in Section II, provides for a simple evalua-

tion and interpretation of the above stability index. Consider the talle used

to generate the coefficients as shown on the next pape.
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TABLE I

N N-i N Z
Coefficients P K- P K- P2 K_ .... P K

0w 1 cN U
U U

z 0(a 0 ,b 0 ) 1

N

z 2z  ( ) ( )

d.
1#.1

N . .

-N(a N ~ N  N ()..

where

CN= N,
r r'

In addition, the constraining relationships among the d.. are given by

N

d. 0 I< j< N
1#3

N

d. = V-4
/.J 1,0

To obtain the denominator (b.) coefficients frcm Table I, one substi-

tutes for P. the appropriately subscripted denominator coefficients of the

analog filter (B.) and sums all the products of the table entries and column
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headings for row j. If, however, the stability index is formed by summing

down each column then, utilizing V-4, F 0 becomes

- U

FO N u -V -5

N-iY

i~l u

where

f
K-= tanhT V-

U S

It can also be shown that stability becomes marginal when F 0 is equal

to zero. Thus, the coefficient accuracy problem is most acute when the

order of the filter is high and the factor K. is small. With K- defined as
U U

in V-6, small values of K- occur when the ratio of sampling rate to cutoff
u

frequency is high. When this is so, V-5 can be approximated by

F 0  s(2KU )N V-7

and the digital filter coefficients approach in magnitude the binomial coef-

ficients and alternate in sign. This result is obtained from Table I in that

the coefficients of the last column can be shown to be the above mentioned

binomial coefficients.

This equation clearly exhibits the effect of the order of the filter and

the ratio of bandwidth to sampling rate on the stability problem. Table I

also gives a great deal of insight into the effect of truncating the filter coef-

ficients. Consider row i of the table, given as



i B K- +d B KN- + .. d., B K N  i + ...
B0 N -1 G, -a- 1i.c - i NU u I

V-8

Now the cocificients cf the analog filter paired as (B, B N), (B1, BN - I

(Bi, BN - i ) are most often of the same order of magnitude. Furthermore, it

can be shown that the d. coefficients can also be paired in the saniv manner.

Thus, if the summation is a'cornplished in the foregoing pair-wise manner,

then one is adding terms of the form

MK_[K_-k +] V

When the ratio of sampling rate to bandwidth is high and t!i" ordc- of the

filter, (N) is large, then KN - 2k can be considerably less than 1 -- especially
U

for small k (towards the outer edges of the table). Therefore, in effcct, the

truncation problem effects the highest order analog filter coefficient first.

That is, BN is effectively set equal to zero in both the numerator and de-

nominator. Thus, if the analog filter was originally of the form

ANSN + A-1 +."' A 0  V :'
G (S) N N SN N  1 - I ()-1

3 N S '  + B3N  S + '' 30

It then becomes

GA(S) l SN1 N + . .A
G(S)--- N-Al\ I

BN I +S N BO

Although the nunmeralor ,nd decoxninator are usually of difcrent

order, they can always be ,vritten as shown, by idding the req ircd zcros.
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Therefore, one is actually synthesizing a lower order filter as one truncates

the coeffiients. Of course, the more coarse the quantization, the more

coefficients (from the high end) become deleted. This reduction of the order

of the filter explains the results obtained, in that as the quantization process

continues, the filter slopes do decrease, which signifies a lower order

filter. The onset of instability is due to the fact that the remaining coef-

ficients are not changed as the order is reduced so that the zeros (or poles)

of the polynomial shift in a complicated manner. It should be noted that for

values of K_ close to .5, F 0 gets smaller with increasing N at a very slow
W

rate. This value of K_ corresponds to a sampling to cutoff frequency ratio
W

Uof approximately 7:1.

A similar result can be obtained for the bandpass case. This is

most easily seen if one applies the LP-BP transformation with a 4:1 ratio of

sampling to carrier frequency. As noted in Section II, this transformation

is obtained by replacing Z I by -Z and K_.. by K] . Thus, the same table
u

can be used if alternate rows (even numbered) are multiplied by -1 and

K_ -- K It can also be shown that the sum of the entries in any partic-
u

ular column is equal to zero excpt for column I where the entries sum to

2 Since, in the low-pass case stability is determined by evaluating the

denominator of the transfer function at Z "  1, then the low-pass case

2NKN . For the bandpass case, the point Z "  e Treplacesyields a K r
u

the point Z-l 1 in the stability computations. However, for the case

under discussion,-- T = Tr/2 and Z - j. Thus, zn =-1 for n odd and
- - .n

Z = I for n even. This alternation in sign effectively cancels out the

alternation in sign due to the transformation and the stability index for band-

pass filters is given by B 0 N KN Thus the index becomes
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B 0 (2 . .l N

V-12

B K-

ii
1~0

where the B. coefficients are the denominator cocfficients of the low-pass1

ana)og filter.

The foregoing results indicate that synthesis of a high order filter in

conjunction with a high ratio of sampling to cutoff (or bandwidth) frequency

should be avoided. These conditions- on tthc Lctor K would, for example,
U

occur whenever it is desired to filter a narrow b.ni teginent from a broad

bandwidth signal. Thu narrow band constraint dictate.s a small'IT whereasU

the b,-oad bandwidth dictates (through the use of the sampling tlheorem) a

large fs" The foregoing results indicate that rapid degradation occurs when

the above ratio exceeds 7:. (K-.. < . 5). Under these conditions, a cascade
U1

approach to digital filter synthesis yields a significant improvement. The

following will illustrate this improvement.

B. CASCADE vs. DIRECT SYNTHESIS

With the foregoing constraints to be illustrated, an ellintic filter

was designed with the specifications as1u1,ed t* let-

Passband Spec. .01 db ripple 0 < c < 1

Stopband Spec. 40db attenuation 1. b < W < OD

Utilizing the techniques of Section III, the above specifications led io a

order analog filter of the form
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I
4 2S + AS + A

Il(S) =06V-13

6~ B. S .i . i 0 i

i 0

where the coefficint.1 ar. givcen ,as

TABLE 11

A= 6.7b09 B 2  5.71737j

A Z  5. 40108 B = 6. 29689 1
i

B= 1.26743 134 = 5.06663
4t

13I  3. 44569 B 5  =2. bZ193

B 61

Solving the numerator and dcnominator polynomials of V-13 the pole-zero

configuration for this filter can be shown to be

TABLE I

z 0 = t j 1. 84538 (zeros)

= + j 1 41268

P1  = - . 10102 4 j 1. 12369

p2
= - .39699+j .99211 (poles)

P3  " .812 94 t j .45946

Initially, this filter was digitized under the conditions that the signal ;9

sampled at 6 times the cutoff frequency oi the filter. Ihus, K = tan( T/2) =

tan(FT/6) = . 57735. Utillizing Table H of 5ection II, substitution of the above

pararneters yields thc following digital filter coefficients.
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TABLE IV

Numerator Coeff. Denominator Coeff.

at 1. 1851589 b0 = 6.31772332

a = 2.0438115 b, = -12. I964865

a 2 = 2.8421442 b z 1S.4185255

a- 3.9669b33 b = -14.8467182
-) 3

a 4 = 2.8421442 b4 = 8.34145098

a 5 = 2.0438115 b 5 = - 2.65466173

a 6 = 1.1851589 b 6 = .424433844

This filter and the filter obtained by rounding the above coefficients to five

significant figures, three to the right and t.,o to the left, are plotted in

Figure V-I. As dictated by the 6:1 ratio, the cutoff frequency of this filter

is at 2 r./6 rad or 600. As car, be seen. there is essentially no difference

in the filter r-.sponses.

This filter was then svnthesized using the cascade approach. The

procedure used was to perform the factorization in tc' analog domain in the

following manner: 'I he ilter G(S) vas -xprcs,,d in taskdc- form as

G(S) G (S) G 2 (S) G,(i) V-J4

2where both G (S ) and G 2(S ) ar,: of the fori !

S 2 + A 0
(7 1 (S)({G, !.S) ) = TI- +'- S,

- B~0 + i ;

The filter C., is of the furin

6 t
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G3(S)1 V-16
S +BIS + B 0

Using the results of Table III, the foregoing filter characteristics become

(S + 1.84538)(S - j 1.84538) V-17
GI(S) S + . 10102 + ji. Ie369)(S + . 1010 - ji. 1Z369)

(S +j 1. 41268)(S - 51.41268) V-18
2( =(S + .39699+ j.992i1)(S +.39699- .9911)

G1S V-19
G 3 (S)-- (S + B1Z4 +j .45946)(S + .81L94 - j 459469

If Eqs. V-17 through V-19 are expanded and the bilinear transform applied

to these filters utilizing the technique of Section II-A with K- = .57735
U

tan(30 °) then the three digital filters become

Filter 1 (from GI(S))

a 0 = Z. 135 b 0 = 1.541

a = .270 b 1 = -1. 151

a 2 = 2. 135 b 2 = 1.308

Filter 2 (from G2 (S))

a 0 - 1. 665 b 0 = 1.839

a = -. 670 b I = -1.239

a= 1. 665 b .922
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Filter 3 (from G 3 (S))

a 0  .333 b 0 = 2. Z30

a .667 b I = -1.419

a =.333 b2 = .352

The product of these responses was obtained and compared with that of

Figure 1I-I, showing no significant difference.

The above procedure was repeated for a higher ratio of sampling to

cutoff frequency to illustrate the previously mentioned degradation. Using

K-= 17633 = tan(10 ° ) (i.e., a 200 cutoff) the sixth order digital filter coef-
U

ficients become

TABLE V

a 0 = .036517931 b 0 = 1.66053236

a, = -.050516111 b I = - 8.1507299

a 2 = -.033249521 b = 17.0485004

a 3  .107569042 b 3 = -19.3912146

a 4 = -.033249521 b 4 = 12.6Z6522

a 5 = -.050516111 b 5 = - 4.4568362

d6 = ,0_6517931 b 6 = .665664076

This filter and the one obtained by rounding the coefficients as before, (3

decimal digits) are plotted in Figures V-2 and V-3. Note the severe change

in filter performance. That is, the curve of V-3 is unrecognizable as a low-

pass digital filter. This illustrates the pioblems involved in a direct

synthesis of a high order filter where the ratio of sampling rate to cutoff
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frequency is large and coefficient rounding is desired. Once again this

filter was synthesized as three cascaded filters with the respective digital

coefficients obtained as before as shown below.

Filter I (from GI(S))

a 0 = 1. 106 b0 = 1. 175

a = -1.788 b I = -1.921
II

a 2  1.1 06 b 2 = 1.004

Filter 2 (from G (S))

a 0 = 1.062 b 0 = 1. 175

a I = -1.876 b I = -1.929

a = 1.062 b 2 = .895

Filter 3 (from G3 (S))

L "031 b0  = 1.314

a = .062 b, = -1.)46

a = .031 '0 = .74t

The product of this response was obtained and plottcd in Figure V-2. A

comparison of this response and that of the rounded and unrounded direct

filter as shows the definite advantage of the- cascadc approach.

An alternate approach to comparing the cascade vs. direct approach

was investigated by Knowles and Olcayto, who modeied' the cocfficient

truncation problem as a parallel error filter and u ed a statistical approach

to evaluate performance.
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The foregoing results were expected in view of the results on coef-

ficient errors and generalized design procedures which showed that the

coefficients are primarily determined by factors R.K-. where R. is the
j 0 3U

analog filter coefficient, N is the order of the filter and K is the normal-
u

ized cutoff frequency. Thus, as K is reduced the effect of R. is lost for

large N as the coefficients are rounded.

C. COMPUTATIONAL QUANTIZATION

The nature of computational quantization is dependent upon the partic-

ular implementation used. A digital filter recursion equation expressed in

direct form i.s given as

N N

Y= a. x - b yn V-ZOn - J n -j L' i -j
j=o j=1

'hen computational quantization occurs at each operation of V-16, the

recursion equation becomes

r, N rI Q,, K Q', a _ -L ,n, y -jZ
11 1 1 '= n, j -n j = -I j [j n -I---o j -- 1

where Q'[-], Q"[-] ano Q'".,] represent the operation of quantizing the

function on which it operates.

If one represents the operation of quantization by an equivalent addi-

tive noise source n' as

0' a] n' + a

then V-2I becomes
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N N

Q Q+ ~a.x byn V-Z2fl~jj n-j L i u-I

j= 0 j--I

where Q is the total quantization noise in the system (i.e., Q = n'+ n" ii).

Thus, the error becomes
N

y Cy V - -bc V-Z3
n Y1 1 n J n-j

-- 1

If it is assumed that the quantization noise has a white spectral density, the

mean square output noise is given by

2

M.S.O.N .- ) H Z) R -('i) d- V-24

where

H (Z) - V5

.2 I

the bi are the denominator coefficients of thle original filter and aQ is the
I Q

mean square input noise which is dependent upon the degree of quaritization.

Thus, computational quantization has been expressed by an addltivtv

noise source, processed by HI(Z) which consists only ot th. dcanouminalor cc

poles of the originMil filter.

Consider the input-output equations of a digital filter synthesized

using the canonical form. In this case the tr. ;fer tunction corresponding

to V-ZO given as

94



N

a Z

H(Z) Y(Z) n 0 N(Z)

nb
n=O

is rewritten as

X(Z) F(Z) V-27

where F(Z) is some arbitrary function. Inverse transforming the two equa-

tions specified in V-27 yields

N

f =x - b. fn n n j -j

j=1
V -28

N

V af.
yn =  

- a nf

= 0

where f is an intermediate variable introduced. This is the so-called
n

canonical form.

If, as befoi, one ,turne--3 that quani zation occurs at cach stage and

that the operation of quantization is represented by an additive noise source,

then it can be shown that the crror is given by

N N

c a. Q - \' b z V-29n n- n-j
J=o .j=l

This pair o ecuations is related to Lhr state -space concept utilized

ini optimval control.
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Thus, under a white noise assumption, the mean square output noise is

given by

2

M.S.0.N. o H (Z ) H (Z-1 dZ V-30

where

N

Sa. z-
V-1

Hi (P) = '0 N V- 31

1+ Vb Z - i
j~1

Thus, for this form, the noise is processed by HIL(Z) which is identical

to the original filter H-(Z). H I (Z) consisted of only the poles of the original

filter whereas H,(Z) consists of the poles and zeros, that is the entire original

filter.

Utilizing the relationships concerning the generalized design proced-

ures for lowpass filters (Table I) it was desired to determine the relationship

between the output noise and the ratio of sampling rate to cutoff frequency

for lowpass filters synthesized using both of the previous approaches.

The filters investigated were second order lowpass, all pole filters

of the form

G(S) SZ V-32
AS + BS + C

Evaluation of the integrals (M.S.O.N./c 2) and utilization of the generalized

synthesis techniques yielded
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1irect Synthesis

2
C K- + A

M.S.0. N. _____ -3

OQ 16 ABC K!

Canonical Synthesis

K (.B K + A)

a z CK z + BK + A
U U

where

IT -

K- =tan-T~ V-35

The above results were rvaluated for a Butterworth, Chbvcheff ()/2db

ripple) and a Maximally Flat Time Delay Filter. The coefficients for these

filters are

Butter worth

p1  + -±jII V-36

Chebycheff

A = 1 B 1.4256245 C 1. 5162026

p1  -.=7128122 t j 1.0040425 V-37

Maximally Flat Time Delay

A=lI B 3 CG=3

p 1-.5 j .8660254 V-38
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Thcse results are plotted in Figures V-4, 5 aad 6.

It is to be noted that at high ratios of sampling rate to cutoff frequency,

the canonical form is vastly superior. There are, however, regions v.hiere

the direct synthesis should be used.

The results obtaincd indicate the importance of determining the value

of the parameters K_ . This parameter not only determines the synthesis
Wu

technique used, but also detrermines the required coefficient accuracy.

D. AN AUXILIARY STORAGE TECHIQUE

In the previous section, expressions were derived showing the effect

of computational quantization as an error producing equivalent noi3e source.

This discussion will develop the concept of an auxiliary storage to be used

to reduce these errors.

If the round-off portion discussed previously is stored in an auxiliary

storage and the main computationi proceeds as prescribed by the applicable

model and some quantization levei, the accuracy of the output value, y , may

be corrected by appropriately weighting the contents of the storage and add-

ing it to the output.

In crder to make a "p~rfect" correction, all prior round-off-seg-

mrents have to be stored and multiplied by appropriate coefficients with

complete pre :ision. Since this is obviously impractical, in the g._neral

case, the technique developed will permit a conservative estimate to be

,.-ade of the error due to truncation in previously rouded-off samples as

well as the quantization present in the round-off arithmetic.

From Lq. V-Z, the error, E(Z), and the round-off or quantization

QZ) are related by
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E(Z) V -39

1 + b. Z 3

j=

As noted previously, this recursive equation can be converted to a non-

r ecursive form yielding

k= 0

Thus

y y+ C V-~ T41

k~ 0

where

C I1
0

N

Ck - b C V-42k Z-j k-j
j =1

A block diagram of the systeni utilizing Eq. V -40 and truncating

the nonrecursive formn after k terms, is illustrated in Figure V-'..

There are three ways to use this technique to adxaniage. In the first

thh

running arithmetic would be necessary, after which the pt ouiput would be

refined using some numnber of current and prior rounid-off valup-s talken fron)

the piggy -bank. This simplifies th-w running rihmii at the expt-nise of

increased storage.
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The second use of the storage is to periodically test the error, (at a

slower than input sample rate) improving the value yn with the weighted over-

flow whenever the error value overflows. Overflow is defined as that part

of the error equal to or greater than the gross quantization of the running

arithmetic. The residue of the overflow would be reinserted as the new

round-off for the nth value and the whole process repeated.

The third possible application is dependent on the nature of the over-

flow. If the bandwidth of the overflow samples is small relative to the input

samples, then it is conceivable that a refinement of yn can be male periodi-

cally but at a rate slower than the input sampling rate.

An Illustrative Example

An example is next presented for an arbitrary filter where the sum

never overflows. However, a correction is made at the 8 th sample time

using a truncated (approximate) and non-truncated (exact) technique.

Example

Assume the filter is given by

yn a 0 xn - bIy 1 I - b 2 yn- 2

where:

a0=10

b I = 1/2

b = 1/4

x =1 n> 0

x =0 n< 0
n

Table VI lists exact values of the output, yn' approximate values of the out-

put, Yn' assuming a quantization of 1/8 and the resulting round-off.
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TABLE VI

£XACT AND APPROXIMATE OUTPUTS VALUES

n Qoxn blYn- I b 2 yn- 2  Yn Y1 bIYn- I bZYn-2 qn

0 1 0 0 1 1 0 0 0

1 1 ll o 112 1/21/2 0l 0

2 1 1/4 1/4 1/z 1/Z 1/4 1/4 0

3 1 1/4 1/8 5/8 5/6 1/4 1/8 0

4 1 5/16 1/8 9/16 i/2 5/16 I/8 1/16

5 1 9/32 5/32 9/16 i/1 1/4 5/32 3/32

6 1 9/32 9/64 37/64 5/8 1/4 1/8 0

7 1 37/128 9/64 73/128 i/Z 5/16 1/8 1/16

8 1 73/256 37/256 73/128 1/2 1/4 5/32 3/32

9 1 73/512 73/512 293/512 5/8 1/4 1/8 0

Assume a quantization of 1/8

and record (i.e., store) the

round-off qn"

By using the algorithm for obtaining C , the following cocfficients

g

arc developed.

C0  , 1 = .I/, CZ = 0, C3  1/8, C4 = -1/16, C5 = 0, C 6 = 1/64,

C_ = 1/128, /

Using these coefficients, the error for the 8 th output will be computed,

E 8 =1 x 3/32 - 1/a x 1/16 + 0 x 0 + 1/8 x 3/32 - 1/16 x 1/16 + 0 x 0

+ 1/64 x 0 ''

E8 =24/256 - 8/256 + 3/256 - 1/256 = 18/256 9/128
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1/2 = 64/128

since

Y8 = Y8 + E 8

• Y8 =73/I Z8

The above numerical example illustrates that the exact result is ob-

tained if all of the round-off values are used.

If only the current and next to last round-off values are stored, an

approximate correction to yn is obtained as

where y =y +n

£8 i x 3/2 - 1/ x 1/16 = /32 = 8/128

= 7Z/1 8.

The error, after refinement, using the approximate correction is one

part in 128 while the error between y8 and Y8 is nine parts in 128.

If the round-off error is pessimistically assumed to be always equal

to the least significant bit (LSB) then the max error E nmax is defined as

E n(max ) = lirn S(LSB)

k -* ou

where O

lir S = C*-~ g
k -- o g= 0

For the example above lims = 4/7 and LSB = 1/8.
k -- * co

E n max 4/7 x I/8 = 1/14. If the storage values are not utilized

at all, the max error for the conditions assumed would be less than 1/14.
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If the stored round-off error itself were quantized (which is generall)

the case) then the error (conservative) due to this approximation would be

lirS (LSB). Where (LSB) is the least significant bit of stored round-off
k -,* oo

value. Thus, this auxiliary storage technique offers the possibility of reduc-

ing errors.

Two sources of errors in digital filtering have been discussed. The

errors resulting from a truncation of the filter coefficients were related to

such critical filter parameters as the order of the filter and the ratio of

sampling rate to critical frequencies using the tabular approach. This ap-

proach allowed for an interpretation of the filter degradation, the onset of

instability and the bit truncation of the filter coefficients. The conditions

under which the cascade synthesis approach is preferred is also discussed,

The errors due to computational quantization and the effect of both the direct

and canonical implementation forms on these errors are then discussed.

Curves are obtained showing the regions in which one implementation is

superior to the other. Lastly, an error reduction technique utilizing an

auxiliary storage approacn is presented. - nis te nnique offr6 Lhe possibili-

ty for reducing computational quantization errors.
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V

VI. RECOMMENDATIONS

As is often the case with analytical studies, the various techniques

investigated suggest areas where further efforts would be desirable. In

addition, some of the results themselves may show sufficient promise to

warrant experimental justification or breadboarding. Summarized below

are the areas which, as a result of this investigation, fall into the above

categories.

1. The results of Section 11 (B and C) and Sec-tion II, concerning the
various techniques and constraints which are associated with the
design of bandpass filters, point out the interplay between the samp-
ling rate, carrier frequency, and filter bandwidth, The foregoing,
in addition to the results of Appendix A, clearly shows the need to
develop sampling and processing techniques which will enable one to
operate digital filters at sampling rates at or near the information
bandwidth.

2. The results of Section V (A and C) concerning stability and coef-
ficient representation illustrate the difficulties encountered when
filters are to be designe - under the constraints of small v.. factors

and high order filters. _.nce truncation invites stability problems
and the foi egoing constraints require an inordinate amount of pro-
cessing, techniques should be investigated which overcome these
difficulties and will thus allow for the pi ocessing or extraction of
narrow hand information from broadband signals.

3. The error considerations discussed in Section Iii indicate that the
development of techniques which provide for approxinate filter shapes
through coefficient modification should be investigated. These
modifications should be directed towards an overall reduction in the
time required to pertorm the arithmetic processing.

4. The results cf Section U1 (B and C) and those of Section III (C and YC)
suggest that a more detailed siudy be made of the relative advantages
of the two specific bandpass filter design techniques discussed. ThL
shifting technique offers a possibility for developing the bandpass
coefficients from thosc of the lowpass filter directly on line. It also
appears more desirabie for tracking filter applications. The L3-13P
transformation o: ri other advantages in terms of control over band-
width and carrie- :'equency.

5. The results of Section IV indicate thal a further iavestigation be direct-
ed toward the relationship between the process of zero-removal and

relocation and the class of allowable frequency response characteristics
achievable for nonrecursive filters.
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6. An extension of the results of Section V-C concerning computational
quantization is desirable. This extension to higher order filters as
well as arbitrary bandpasb filters would allow the designer to proper-
ly choose the best implementation for the particular critical para-
meters of the filter.

7. The error reduction technique discussed in Section V-D has shown
sufficient merit to warrant an experimental breadboardiug. This
auxiliary storage technique area requires some additional study with
regard to the optimum number of coefficients to be used in the storage
"bank" as well as a determination of which of the three modes it should
operate.

8. An experimental investigation should be initiated concerning the digital
oscillator implementation technique discussed in Appendix 13. This
technique has applications to such areas as frequency translators,
bandpass processing and tracking filters.

9. Besides the discussion of the shifting technique for bandpass digital
filters and the nonrecursive design from tabulated data, the majority
of the synthesis techniques discussed have utilized a transformation
procedure which converts an analog filter to an equivalent digital
filter. These approaches might be generally termed digital equivalence
precedures. An alternat, approach is to synthcsize digital filters with-
out reference to an equivalent analog filter. This approach, which
might be termed direct digital synthesis, warrants detailed investiga-
tion in that it will alljo or r. -ru flexibility in the designs that can be
achieved. Two approaches to this problem of direct design which have
been investigated to a limited extent under very specific conditions
have utilized polynomial approximation procedures and pole-zero
shifting procedures in the Z plane. Both of these procedures as wel:
as several other approaches should be expanded for ub in the direct
syrithesit- of digital filters.
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APPENDIX A

A BANDPASS SAMPLING TECHNIQUE

The sampling and reconstruction of a lowpass signal with a (positive)

bandwidth of B/Z (Hz and io spectral energy beyond this frequency can be

acconplished (theoretically) by sampling at a rate of B samples per second.

B also represents twice the highest frequency component present in the signal.

If chis procedure were carried over directly to bandpass signals, unreasonably

high sampling rates vould result. Moreover, since it is well known that the

information content in a signal is dependent upon its bandw.idth and not its

center frequency, one would expect that it is possible to recover the bandpas5

waveforem with a sampling procedure at rates in the order of the bandwidth

of the bandpass signal. Direct application by the sampling theory for band-

pass signals shows this to be the case.

The periodic nature of digital filters suggests the following sampling

proceduru. Assume a bandpass signal as shown below.

A

: i
1 I- .

1%,; ( T .

i~ j ___I '___
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The process of sampling produces spectral repeats or aliased spectra

at multiples of the sampling frequency. The repeats are shown as the dotted

spectra. It is desired to choose a sampling rate, fs, such that there are no

spectral overlaps. With this objective the following constraints can be placed

th
upon fs, B, f and fZ" Let k be the index representing the k repeat or

shifted spectrum. Then for no overlap at bandpass one requires

+kf >f 2  - %f+ k-l) f < f A-I

Simplifying equation A-i yields

fs > Z f2

A-2

< 2 f 2B
s k-I 2 k-i

or

A-3
fs > f2 fB -B-i I

From these equations one obtains

f > 2B fs A-4
f2

1< k<-
-B

Thus, the absolute minimum allowable sampling rate is 2B. The

allowable normalized sampling rates relative to f 2 /B, the ratio of the upper

frequency to the bandwidth, are shown in figure A-!. This diagram shows

that care must be exercized in choosing a sampling rate. It is of interest to

note that the sampling rate of 2B is allowed only when f2 and B are integrally

related. It is also of interest to note that if two sampling rates fs /B and
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f /Bare chosen (f. > f, then tbe allowable sampling region or area can be

shown to be

A- [is ] A-5

B ZB

which is independent of k. Furthermore, the extend of validity on the fZ/B

axis is

[f 2 [s ~ 1 + IA-6L BA-6

which is an increasing function of k.

The foregoing considered the required Zampling rate for no bandpass

overlap. Additional constraints should be placed on the sampling rate in order

to filter this signal digitally at a reasonably low frequency. One such con-

straint is to require that there be no spectral interchange. That is, if the r t h

repeat is the last negative repeat from the negative spectral lobe (moving to

the right) the (r+ 1) t h repeat is the last positive repeat from the positive spec-

tral hbe ,rnoving to the left); them for no spectral interchange one requires

that
(r + l ) f - f ;P > f ? - r fs

A-7

f f
"s > Z !4;

As an example of the case where the sampling rate is sufficient for no spectral

evcrlap but spectral interchange does occur, consider the following. A band-

pass signal has f = Z50 Hz, f = 150 Hz, B 100 as shown below
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-30 -200 -'70 70 200 -340
1Io.o 0o oIoO_ 0

SII I I I , .

f is chosen as Z70 Hz. As shown in the figure, no spectral overlap occurs,

but spectral interchange occurs since

f f
s =2. 70 "u-= 2.50 r = 0 A-8

Thus from A-7, 2.7 must be greater than Zx2. 5=5 which is not the case.
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APPENDIX B

DIGITAL OSCILLATORS

Digitail oscillators pla.y an integral part in such areas as frequency

translators, hete rodyning techniquQes and tracking and frequency hopping

filters as well as other cIpplicatioris. Thus several configurations for the

digital generation Of 5111C and cosine oscillators will be discussed.

A starting point in the development of these generators is their Z

transformn3 which cani be showni to be

Cos w~ t
0

t 1 - -(Cos a) Z

1 0s 1 - 2(cos CL) Z_ +Z ~2

sill w t
0

" sin ~ (sin o) Z_-
I Q T- 2(eos ') Z- + Z-

wherc a is 2
IT divided by thle ratico of sampling 'reqiiency to center frequency.

That is the sinusoidal values are obtained at increments of a (radians).

In equations B-1 and B-2 the Z transforms are i,- the form of a re-tio.

Therefore, they can be interpreted as transfer functionis of a recursive

digit'd ltr inverse transforming these- equations leads, respectively, to

C 0s 1.1 t

Yk (c os ni) x Kl +4 (2 Cos a)y k- - vk? -

sinl w t

(S In o) -t (2 Cos ci) y. 1  --

k 15'I- k



Thus, these generators have been modeled as recursive digital filters whose

impulse responses provide the samples of sine and cosine at any desired in-

crement. That is, if Z0 samples per cycle were desired, then a = (2~,/20) = 180

and the outputs would correspond to the values of these sinusoids at 180 incre-

ments. it should also be noted that these digital filters have poles on the unit

circle and thus if allowed to run indefinitely an " infinite" amount of noise

would result due to computational quantization. This problem can be circum-

vented by periodically re-starting the oscillators. The implementation of these

generators is shown in figure B-1. The dotted region of the figure is shown

merely for illustrative purposes and represents the first two initial conditions

to be loaded into the delay elements. That is, the cosine generator requires

Kand Kcos a and the sine generator 0 and K sin a. Thus B-3 and B-4 can both

be written as

Cos W t (and sin w t)

yk = (2 cos a) Yk-I - Yk-Z B-5

where he cosine terms are obtained by setting (y_, Y-) to be (K, K cos a) and

the sine terms by setting the initial outputs to be (0, K sin a).

The configuration shown in figure B-1 is instrurnented in direct form

and, therefore, has some of the error problerns discussed in section VI with

regard to computational quantization. An alternate confrigiration is based on

the identities

cos (A+ B) cos A cos B - sin A sin B
B-6

sin (A+ B) sin N cos B + cos A sin B
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These identities lead to the recursion equatious

Yn (cos a) Y1-I + (sin CI) xn I

B-7'

X n (Cos fl) X n-I - (sin a) yn-I

where the y' s represent the sine output and the x s the cosine output. This

configuration is shown in figure B-2. For sampling rates that are in the order

of 10-30:1 and resetting thu system every cycle, these two configurations pro-

duced very similar results. Without resetting, the configuration of figure B-2

was superior. A considerable simplification occurs in both of these configura-

tions when these generators yield.4 samples per cycle. In this case,

a = u/2 = 900, cos a = 0 and sin ai 1 and the outputs can be shown to yield

the sequence 1, 0, -1, 0, 1, 0, -1, .... This of course merely corresponds to

a sampled square wave and there are no computational quantization problemrs.

For this case, the oscillators have been reduced to a rather trivial configura-

tion. This result is expected in that it is common practice to build hetero-

dyners which square wavc modulate a signal in order to shift the signal by an

amount (in the frequency domain) equal to the fundamental frequency of the

square wave. Energy centered at the higher hairmonics is then filtered C-ut.

A third configuration yielding irproved pcriorna ;ice with liess hardw\are

is shown in figure B-3. 'Ihis configuration is ba- ed on 1x3r3s g B-i and B-2

in canonical form. The resulting equalims are

f ;x + (2 cos 0) 1 fTI r' " n-1 , ?-2

S = (sin a)

B-i.

= - ( a. o) f f
111-
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From the above it can be seen that since x' = x, f' = f that the sine
n n n n

and cosine generators share the sa-ne auxiliary variable but are not interlocked

as in figure B-2. It is also to 1 e noted that there is a reduction in the required

number of multipliers usir, sine a and cos a. Furthermore, the errors in the

sine a multiplication do not affect the alternate or cosine output.

Using the techniques discussed in section V, it was shown that the

error performance of this configuration is superior to that of the previous

configurations. Simulation of the recursion equations with 10 bit and 14 bit

quantization bears this out as shown in tables I and II.

TABLE I

10 Bit Quantization

Angle (degrees) Generated (sine) Ideal (rounded)

(Figure B-2) (Figure B-3)

0 0 0 0

10 .174 .174 .174

Z0 .343 .342 .34Z

30 .501 .501 .500

40 .644 .644 .643

50 .768 .767 .766

60 .869 .867 .866

70 .948 .942 .940

80 .989 .987 .985

90 1.006 1.003 1.000



TABLE II

14 Bit Quantization

Angle (degrees) Generated (cosine) Ideal (rounded)

0 1.000 1. 0000

10 .9848 .9848

20 .9401 .9397

30 .8671 .8660

40 7679 .7660

50 .6458 .6428

60 .5043 .5000

70 .3478 .3420

80 .1807 .1737

90 .0083 .0000

The results shown in this table are for output generated at 100 incre-

ments. For smaller increment, the improvement shown in the performance

of the configuration of figure B-3 over that of the previous figures increases.

This is once again due to the fact that the canonical form is best when the

sampling rate is high. The outputs shown in these tables result from quan-

tizing the appropriate equations to the specified number of bits.

Digital oscillators not only are important devices. as frequency syn-

thesizers but also play an integral part in such important communication

devices as translators, tracking filters and bandpass processing among many

others. The configuration of figure B-3 can therefore be combined with the

.esults concerning digital bandpass filters to yield a completely digital device.
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